
A Blockchain-Controlled Physical Robot Swarm
Communicating via an Ad-Hoc Network

Alexandre Pacheco[0000−0001−5933−3553], Volker Strobel*[0000−0003−2974−9827],
and Marco Dorigo[0000−0002−3971−0507]

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{alexandre.melo.pacheco,vstrobel,mdorigo}@ulb.ac.be

Abstract. We present a robot swarm composed of Pi-puck robots that
maintain a blockchain network. The blockchain serves as security layer to
neutralize Byzantine robots (faulty, malfunctioning, or malicious robots).
In the context of this work, we implemented a framework for high-
throughput communication using a decentralized mobile ad-hoc network.
This work serves as a building block for secure real-world deployments
of robot swarms. Our results show that the use of a blockchain is feasible
and warranted in embodied robot swarm deployments.

1 Introduction

In real-world deployments, robot swarms will face a multitude of security chal-
lenges that are rarely taken into consideration in the swarm robotics field [7].
In particular, the presence of Byzantine robots, that is, malfunctioning, faulty,
or malicious robots, might lead to a discrepancy between the intended and the
actual behavior of a swarm. In a recent article, Strobel et al. [16] deliver a com-
prehensive proof-of-concept for a blockchain-based approach that greatly limits,
in a fully decentralized manner, the impact of Byzantine robots on the robot
swarm behavior.

The field of Blockchain Technology was initiated through the digital currency
Bitcoin [12], in which the blockchain serves as a decentralized ledger for stor-
ing financial transactions. Later blockchain frameworks, such as Ethereum [2]
(used in this work), extended the capability of blockchains to be decentralized
computing platforms. Put simply, in the Ethereum blockchain the network par-
ticipants can run programming code on the blockchain and agree on the out-
come of the programs, without the need for supervision or mutual trust. It is
precisely these decentralized programs that have proven to be useful in robot
swarms, where a blockchain can serve as a secure decentralized coordinator and
database [16,17,15,14]. To the best of our knowledge, all existing multi-robot
systems that use blockchain and smart contracts technology have been demon-
strated on simulated robots: the present paper is the first successful implemen-
tation of this technology in a physical robot swarm.

The replication of simulation results with physically embodied robots is cru-
cial to convince the robotics community of the feasibility of blockchain and smart



2 A. Pacheco et al.

contracts technology as a tool for solving security issues in robot swarms. How-
ever, moving from simulated to real robots is not straightforward and involves,
among other things, the choice of adequate robot platforms, communication pro-
tocols, and blockchain frameworks. Unfortunately, in previous works addressing
the topic, many questions whose answer would be of paramount importance for
a successful real robot implementation were not addressed. Examples are:

– which lightweight robot platform can provide the requirements for running
a blockchain framework?

– which blockchain consensus protocols are appropriate for robot swarms?
– which communication infrastructure should be used?

In this work we give a first answer to the above questions by presenting an
experimental setup consisting of Pi-puck robots [10] which maintain a proof-of-
authority blockchain network and communicate through a mobile ad-hoc net-
work. The chosen robot platform—the Pi-puck—is a reasonable choice due to
the low cost and easy availability of the Pi-pucks, and to their support for Linux
that allows the easy installation of the blockchain software—Ethereum in our
case. The choice of the proof-of-authority protocol is motivated by its low com-
putational cost that allows for running it efficiently on the Pi-puck processor.
Finally, we chose to implement a mobile ad-hoc network as communication in-
frastructure. This choice is consistent both with the standard swarm robotics
requirements of decentralized and local/peer-to-peer communication (see e.g.,
[1,4,6]), and with the throughput required for blockchain synchronization.

The field of blockchain-based swarm robotics was set out in 2016 by [3]; the
paper describes several use cases for blockchain-controlled robot swarms. Since
2018 there has been a number of simulation results for blockchain applications
in robots such as: the achievement of consensus in robot swarms in the presence
of Byzantine robots [15]; the improvement of communications and performance
in industrial robots [5]; the formation of coalitions in cyber-physical systems
[9]; the management of collaboration in heterogeneous multirobot systems [14];
the secure collection of data from robots [20]; and path planning in multi-robot
systems [11]. Hence, research addressing the application of blockchain technology
to robotics is an active research area and, as such, there is a high demand for
platforms to run blockchain experiments on physical robots.

The remainder of this paper is structured as follows. Section 2 describes the
robot hardware and control routines, the used blockchain software, and the setup
of the experiments. Section 3 presents the experimental results. Finally, Section 4
concludes the paper and indicates directions for future research.

2 Methods

2.1 Experimental Scenario

In this paper, we consider a scenario where a robot swarm is given the task to
determine the fraction of white tiles in a checkerboard environment (Figure 1).



A Blockchain-controlled Physical Robot Swarm 3

Fig. 1. The Pi-puck robots move in an 1×1 m2 arena covered by 68 black and 32 white
tiles. The robots’ goal is to determine the fraction of white tiles by using their ground
sensors. A part of the swarm act as Byzantine robots that disseminate wrong estimates.
Using their LEDs, the robots communicate events—such as the receipt of a new block
or the receipt of the consensus signal—to the experimenter for visual analysis.

The difficulty of this task can be increased by increasing the number of Byzan-
tine robots that distribute false information, or by decreasing the size of the
swarm, which leads to lower coverage of the map and lower network connectiv-
ity. Our goal is to study how a blockchain—and its relevant components, such
as smart contracts, cryptotokens and protocols for consensus—can be used to
counteract the negative influence of Byzantine robots when a swarm is trying to
achieve swarm wide consensus. As this is the first implementation of a physical
robot swarm that uses blockchain and smart contracts technology, we provide
guidelines for the establishment of such a system, and insights into some details
of its operation.

The Robot Platform. The experiments are conducted using a swarm of up
to N = 10 Pi-puck robots [10]. Pi-pucks are e-puck robots extended by a Rasp-
berry Pi Zero W single board computer. Compared to the e-puck robot, the
extension board improves the robots’ communication capabilities and computa-
tional power. The Raspberry Pi Zero W has a 1 GHz processor with 512 MB of
RAM. Hence, the use of the Raspberry Pi Zero W extension board allows for the
implementation of more complex algorithms compared to previous e-puck robot
versions.

The Arena. The arena has a dimension of 1×1 m2. Its plywood floor is covered
with 68 black and 32 white square tiles; therefore, the fraction of white tiles is
0.32. Each tile is 10 × 10 cm2. The arena is bounded on each side by a wooden
barrier which can be detected by the robots’ obstacle avoidance sensors.

2.2 Control Routines

In the following, a high-level overview of the software that is executed on each
robot is given. A more in-depth description is given in a separate technical



4 A. Pacheco et al.

report [13], in which we provide a detailed description of all the steps needed to
set up and replicate our experiments using the Pi-puck robot.

The control for each robot is composed of five high-level routines that are
executed in parallel at different frequencies:

– Random-walk with obstacle avoidance (frequency: 10 Hz): at each step the
robot can perform: a) straight movement, b) rotation on site, or c) obsta-
cle avoidance. If the robot’s infrared (IR) sensors detect an obstacle, phase
c) is selected in order to prevent collisions; otherwise, the robot alternates
between the random-walk phases a) and b); the duration of each phase is
sampled from an exponential distribution (we use the same parameters as
[19]).

– Estimation (frequency: 1 Hz): the robots calculate a local estimate of the
fraction of white tiles in the environment by dividing the number of white
ground sensor readings by the total number of readings; to reduce noise, the
sensors sample the floor at a rate of 20 Hz and the average of these samples
is used in this routine.

– Peering (frequency: 3 Hz): each robot uses its range-and-bearing IR actua-
tors/sensors to simultaneously transmit its ID, and listen for other IDs within
a fixed range (approx. 10 cm). After an ID is received, the robot executes a
TCP request to obtain the Enode—a unique identifier of a blockchain node,
used for the peering calls. After 2 seconds without receiving close range IR
messages, a peer is removed from the blockchain and all information regard-
ing that peer is deleted.

– Local estimate dissemination (frequency: 1
45 Hz): Every 45 seconds, a robot

sends its local estimate to the smart contract where local estimates are
stored, aggregated, and refined to generate a shared estimate.

– Block sealing (frequency: varying—see below): On each robot, an instance
of the Ethereum software geth is executed during the entire course of the
experiment. In order to create new blocks on the blockchain, each robot acts
as a sealer in this background process.

With the exception of the Ethereum client, which is implemented in the Go
language [2], we implemented each control routine in Python1; in order to run the
routines in parallel and guarantee the specified frequencies, the multi-threading
package is used.

2.3 Blockchain Technology

For fundamentals of blockchain technology, we refer the reader to [16, Section 2]
and to the original papers on Bitcoin [12] and Ethereum [2]. Here, we limit our-
selves to the description of those aspects of blockchain technology that are most
relevant for our setup—namely, the used proof-of-authority consensus protocol,
as well as the concepts of smart contract and cryptotoken.

1 Project repository: https://github.com/teksander/geth-pi-pucks



A Blockchain-controlled Physical Robot Swarm 5

Consensus Protocol. The decentralized nature of blockchains can result in
conflicting situations (e.g., a different order of transactions in different versions
of the blockchain). To resolve these conflicts and agree on a common order
of transactions, a consensus protocol is needed. In this work, we use proof-of-
authority (see [18] for the full specifications), an alternative to the original and
most commonly used blockchain consensus protocol known as proof-of-work [12].
In contrast to the computationally expensive proof-of-work, proof-of-authority
requires a majority of preselected nodes (i.e., in this work, a majority of robots)
to agree on the state of the blockchain database. In the proof-of-authority proto-
col there are two kinds of blockchain nodes: normal blockchain nodes and sealer
nodes, which are analogous to miners in proof-of-work and that are able to create
new blocks by signing them. For each block, there is a preferred sealer, chosen
in a round-robin fashion. If the preferred sealer signs the block, it is called an
in-turn signature, if another sealer signs it, it is called an out-of-turn signature.
The sealers can sign new blocks anytime they want, but in order for a new block
to be valid:

– the timestamp of the new block must be at least t = 15 seconds after the
previous block (also known as the block time);

– a sealer can only sign one block in bN2 c + 1 blocks (to guarantee majority
voting);

– a sealer must create a correct signature using its private key and sign the
hash of the current block.

As soon as a sealer has signed a block, it disseminates the block in the network.
The other nodes verify the signature and the validity of the block. The nodes
agree on the strongest chain, that is the chain with the highest difficulty. The
difficulty for in-turn signature is 2, and the one for out-of-turn signature is 1.

The major advantage of proof-of-authority is that it does not depend on
solving computationally complex mathematical puzzles (as the standard proof-
of-work-based consensus protocol does). Even though in this work our swarms
contain a fixed number of robots (from 5 to 10), proof-of-authority also works
with swarms with varying number of robots by either keeping a core of trusted
sealers or adding and removing sealers based on majority vote.

Blockchain-Based Smart Contract. A blockchain-based smart contract is a
piece of programming code that is stored on the blockchain. The smart contract
encapsulates functions and variables, and participants of the blockchain network
are able to alter its state by sending transactions to its functions. Blockchains
additionally store the amount of “cryptotokens”—that is, immutable shares of
a digital currency—that each participant possesses (see below).

The smart contract used in our research has four functions with which the
robots can interact:

1. sendEstimate(localEstimate): this function enables the robots to store
their local estimates on the blockchain. In order to store an estimate, robots



6 A. Pacheco et al.

have to send 40 ether. Ether is a scarce cryptotoken, and the fact that sending
transactions requires ether effectively limits the number of transactions a
robot can send;

2. askForUBI(): by sending a transaction to this function, robots can make a
request for the universal basic income (see below for a description);

3. getEstimate(): this function returns the aggregated estimate of the fraction
of white tiles, as determined by the blockchain-based smart contract;

4. hasConverged(): this function checks if the smart contract has reached con-
vergence on an estimate (i.e., it determines if the absolute difference between
the previous and the current value of the shared estimate is smaller than
τ = 0.01), in which case it returns ‘true’;

5. registerRobot() this function is called by each robot at least once, and
is required before a robot is allowed to use any other function of the smart
contract. This function allows using the same smart contract independently
of the number of robots N .

The flow of information in the smart contract works as follows. After a robot
registers itself, it can begin sending transactions that contain local estimates.
Sent local estimates are stored in a list of proposals in the smart contract. As
soon as N proposals are received, the smart contract performs a simple out-
lier detection, where all proposals with an absolute difference to the current
blockchain estimate larger than δ = 0.2 are discarded (except for the very first
N proposals that are all accepted). The accepted proposals are used to update
the estimate in the blockchain, which is the arithmetic mean of all accepted pro-
posals. All robots that sent an accepted proposal get back their 40 ether plus a
bonus consisting of a share of the non-repaid ethers of the discarded proposals.

Cryptotokens. In order to store their local estimate in the blockchain, robots
send sendEstimate transactions accompanied by a fixed amount of cryptotokens.
Cryptotokens are an immutable and scarce asset which is stored on a blockchain
ledger. A digital asset with these properties is a key component to limiting the
number of transactions robots can send, and thus prevent Sybil attacks. Robots
can obtain tokens in two ways:

– by being reimbursed when sending accepted proposals (that is, by sending
useful information);

– by receiving the universal basic income (UBI).

The UBI is an economy mechanism we established within the smart contract to
allow the fair distribution of tokens between the robots. It functions as follows:
at block numbers which are a power of 2 (i.e., in the blocks 2, 4, 8, · · · ), the smart
contract grants 20 ether to each robot in the swarm. This exponential scheme
makes sure that in the beginning of an experiment every robot receives enough
ether to be able to send its local estimate; however, over time sending useful
information becomes the main means to receive additional ethers and to be able
to continue participating in the experiment. Using this scheme, we can take
advantage of the immutability and scarcity of blockchain cryptotokens to filter
Byzantine robots out and limit their influence on the smart contract estimate.



A Blockchain-controlled Physical Robot Swarm 7

2.4 Ad-Hoc Network

In order to exploit the Wi-Fi communication abilities of the Raspberry Pi Zero W
without compromising the decentralization of the robot swarm, we establish a
Mobile Ad-hoc Mesh Network using the b.a.t.m.a.n. routing protocol [8]. The
advantage of such a network is that it does not rely on any central hubs (such as
routers or master servers) nor does it assume global connectivity. Instead, each
node participates in routing by forwarding data of other nodes.

In our experiments, the communication range of the ad-hoc network is ad-
ditionally constrained by the range-and-bearing (RAB) board of the robots. We
do this to enforce the swarm robotics core assumption of local communication,
or, otherwise, the small arena size would lead to global communication. By tun-
ing the power allocated to the RAB board it is possible to physically limit the
communication range to approximately 5 cm. Robots broadcast the last 8 bits
of their IP address in this fashion, and once an exchange has taken place, the
connection to this IP address is established via the Ad-hoc network. Then, the
robots exchange their enodes (an enode is a unique identifier for each Ethereum
node) using TCP, in order to connect their Ethereum nodes and begin synchro-
nization of the blockchain. From the moment a robot stops receiving signals from
the RAB of a blockchain peer, a 2-second grace period is started after which the
peer is removed.

2.5 Experiment Setup and Evaluation

Initialization and Termination. At the start of each experimental run, the
robots are randomly distributed in the arena by the experimenter. Then, all
robots connect to the Ethereum process of a bootstrap node (a desktop PC)
and wait for a signal to start executing the parallel routines of Section 2.2. The
experimenter sends the start signal from the bootstrap node, which consists of
broadcasting a transaction containing the smart contract. An experimental run
is stopped after all robots have received ‘true’ when querying hasConverged(),
at which time they turn on their green LEDs.

Independent Variables. Each experiment may differ in (i) the total number
of robots in the swarm; or (ii) the number of Byzantine robots.

(i) Swarm Size: Changing the swarm size allows for analyzing our platform
in terms of two key features of robot swarms: scalability, i.e., the ability of
the system to maintain or improve performance as the swarm size increases;
and partition-tolerance, i.e., the ability of the system to reach consensus when
there is reduced network connectivity (in this case, induced by a more sparse
distribution of robots in the arena). As mentioned before, the dynamic addition
and removal of block sealers is a feature in proof-of-authority; however, it has not
been exploited in this work, and instead, all sealers are included on the genesis
block in each experiment.



8 A. Pacheco et al.

Table 1. Overview of the experiments and their parameters

No. Experiment name Swarm size # Byzantine robots

1 Increasing Byzantines 10 0, 1, 2, 3, 4
2 Increasing swarm size (no Byzantine robots) 5, 6, 7, 8, 9, 10 0
3 Increasing swarm size (20 % Byzantine robots) 5, 10 20 %

(ii) Byzantine Robots: To study the performance of our approach for increas-
ing numbers of Byzantine robots, we model a Byzantine robot as a robot that
disables its ground sensor, keeps a local estimate ρ̂ = 0.0, and sends this faulty
estimate to the smart contract. This failure mode is well-motivated by our tests
with physical robots and can occur in several situations: (1) a robot gets stuck
on a tile during the course of the experiments, for example, due to a broken
motor; (2) a robot’s ground sensor does not have the correct distance from the
floor, for example, due to a loose screw; (3) the communication to the ground
sensor is broken, for example, due to a crash of the I2C communication protocol;
or (4) the robot is controlled by a malicious entity that tries to work against the
goal of the swarm. Byzantine robots are selected randomly by the experimenter
at the start of the experiment.

Metrics. The performance of our approach is evaluated by comparing the er-
ror between the actual fraction ρ of black tiles to the blockchain estimate of a
randomly selected robot at the end of each run; and the time required for all
robots to receive the consensus signal. In addition, we record the size of the
blockchain in MB and we use it to draw conclusions regarding the scalability of
the approach.

3 Results

In order to evaluate the presented approach with physical robots, we conduct
three experiments (Table 1). For each setting of each experiment we conduct
10 repetitions.

3.1 Experiment 1: Increasing Byzantines

The first experiment studies the impact of Byzantine robots in a swarm of fixed
size N = 10. The number of Byzantines is increased from 0 to 5. Our hypothesis
is that the approach has the lowest absolute error when no Byzantines are part
of the swarm. We expect the Byzantines to have little effect up to a crucial point
where they have a strong adverse effect on the estimate.

Results and Short Discussion Figure 2 shows the results obtained. The Byzan-
tine robots have a small impact when their number is between 0 and 3 (median



A Blockchain-controlled Physical Robot Swarm 9

●

●

●

0
4
8

12
16
20
24
28
32

0 1 2 3 4 5
Number of Byzantine robots

A
bs

ol
ut

e 
er

ro
r 

(in
 %

)

●

●

●

●

0

250

500

750

1000

0 1 2 3 4 5
Number of Byzantine robots

C
on

se
ns

us
 ti

m
e 

(s
)

Fig. 2. Experiment 1 – Increasing Byzantines (10 robots in total, 0 to 5 Byzantines).
Left : The median of the absolute error stays below 5 % for 0 to 3 Byzantine robots. With
4 and 5 Byzantine robots the estimate error becomes much larger as the Byzantine
robots are able to steer the estimate towards the wrong value. Right : There are no
statistically significant differences in the consensus time when the number of Byzantine
robots increases, even though the variability tends to increase.

of absolute error < 5 %) because their estimates are rejected by the smart con-
tract and therefore they eventually run out of cryptotokens. As soon as four
Byzantines are part of the swarm, the median error becomes significantly larger
as Byzantines begin to collect rewards and therefore to have a stronger influence
on the estimate. We also observe a high variability that is due to the fact that
Byzantine robots may or may not become the dominant party—the estimate
may therefore sway in either direction: reality, or zero. The estimate variabil-
ity decreases with five Byzantines because in this case the Byzantines become
dominant as they always send the same 0 % estimate, and are therefore able to
consistently collect rewards and steer the estimate towards the wrong value.

3.2 Experiment 2: Increasing Swarm Size (No Byzantine Robots)

In Experiment 2 we investigate to what extent the size of the swarm has an
influence on the consensus time as well as on the blockchain size. To this end,
we increase the swarm size from 5 to 10 robots.

Results and Short Discussion The median of the absolute error is below 5 %
for all swarm sizes and independent of the swarm size (results not shown). As
expected, the consensus time decreases with an increasing swarm size (Figure 3,
left). The consensus time is influenced by several variables, such as the number
of transactions and the average connectivity of the network, which is higher
when there are more robots distributed in the arena. The blockchain size grows
linearly in time. To obtain the growth rate for the different swarm sizes, a linear
regression was performed using time as a predictor of blockchain size (Figure 3,
right). The larger the swarm size, the more transactions are created, thus the
faster the blockchain size grows.



10 A. Pacheco et al.

●
●

●

● ●

0

250

500

750

1000

5 6 7 8 9 10
Number of robots

C
on

se
ns

us
 ti

m
e 

(s
)

0.0

0.1

0.2

0.3

0.4

0.5

0 300 600 900

10 robots 

Time in seconds

B
lo

c
k
c
h

a
in

 s
iz

e
 in

 M
B 9 robots

8 robots
7 robots
6 robots
5 robots

Fig. 3. Experiment 2 – Increasing swarm size (5 to 10 robots, no Byzantine Robots).
The consensus time (left) decreases approximately linearly with the number of robots.
The blockchain size (right) increases linearly over time (values obtained by linear re-
gression for each swarm size).

5 10

Number of robots

A
b

s
o

lu
te

 e
rr

o
r 

(i
n

 %
)

0
4

8

12

16

20

24

28

32
●

●

5 10
Number of robots

C
o

n
s
e

n
s
u

s
 t
im

e
 (

s
)

●

●

●

0

250

500

750

1000

Fig. 4. Experiment 3 – Increasing swarm size (5 or 10 robots, 20 % Byzantine robots).
Left : The absolute error is not influenced by the number of robots. Right : With 5 robots
the consensus time with (large boxplots) or without (small boxplots) Byzantine robots
is not significantly different; with 10 robots the presence of Byzantines significantly
increase the consensus time.

3.3 Experiment 3: Increasing Swarm Size (20% Byzantines)

In the third and final experiment, we study how different swarm sizes deal with
a fixed fraction fraction of 20 % Byzantine robots. We perform Experiment 3
exclusively with 5 and 10 robots, because only these two swarm sizes permit to
have exactly 20 % Byzantine robots.

Results and Short Discussion Figure 4 (left) shows that, as without Byzantines,
the absolute error is independent of the swarm size. Figure 4 (right) shows that,
when comparing the results to Experiment 2, with 5 robots the consensus time
with or without Byzantines is not significantly different, while with 10 robots
the presence of Byzantines significantly increases the consensus time.

4 Conclusions

In our research we are interested in developing robot swarms that present a
high level of security against the possible presence of Byzantine robots. The



A Blockchain-controlled Physical Robot Swarm 11

blockchain protocol uses a set of technologies to generate secure and tamper-
proof knowledge shared by a network of mutually untrusting agents (robots
in our case): public-key cryptography, digital signatures, consensus protocols,
decentralized databases, and smart contracts. By using these technologies within
the blockchain protocol it becomes possible to protect a robot swarm from Sybil
attacks [16] and to reduce the influence that Byzantine robots can have on the
overall swarm behavior. Additionally, it makes it possible to let the swarm reach
consensus about the overall status of the system as stored in a decentralized
ledger that can also be used as a tamper-proof register of events, accessible
during, or after, an experiment.

While we had already demonstrated the feasibility of using the blockchain
protocol in a robot swarm in previous work [16,15,17], this was done only in
simulation. One important question when moving to real robots is whether the
computations and communications required by the blockchain protocol are still
feasible in a system composed of agents (the robots) that have limited computa-
tional power and only local communication (i.e., they can only communicate with
neighbour robots)—as opposed to standard implementations of the blockchain
protocol where the individual nodes are powerful computers that are fully con-
nected to each other.

In this paper we have demonstrated the first example of a physical robot
swarm that uses the blockchain protocol and smart contracts. In particular, we
have showed that it is possible to do so in a swarm of not-so-powerful robots
using a low-cost Raspberry Pi Zero W as onboard computer. To get these re-
sults, we have used the proof-of-authority protocol and our results show that
the Ethereum client geth running on our robots uses, regardless of experimental
parameters, about 13.7 % of the available Raspberry Pi’s CPU power.

Our results show that the blockchain approach is feasible also in terms of
data storage: the size of the blockchain data folder in our robots grows linearly
over time, and remains under 0.5 MB at the end of a 15-minute run (Figure 3).
Therefore, the same experiment could be executed for about one year using a
16 GB SD card as data storage.

In conclusion, the reader should note that our goal for this article was to show
that our previous results obtained in simulation would carry over to a swarm
of real robots and consequently that the use of a blockchain is warranted for
real-world deployment of secure robot swarms. We did not, however, intend to
provide the most efficient possible implementation, nor fine tune parameters in
order to achieve the best possible results: these aspects are left for future work.

Acknowledgements. Alexandre Pacheco acknowledges support via a fellow-
ship from the Faculty of Applied Sciences of the Université Libre de Bruxelles.
Volker Strobel and Marco Dorigo acknowledge support from the Belgian F.R.S.-
FNRS, of which they are a Research Fellow and a Research Director respectively.



12 A. Pacheco et al.

References

1. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: A review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013).
https://doi.org/10.1007/s11721-012-0075-2

2. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. Ethereum project white paper. Tech. rep., Ethereum Foundation (2014),
https://github.com/ethereum/wiki/wiki/White-Paper, Accessed Jul. 18, 2019

3. Castelló Ferrer, E.: The blockchain: A new framework for robotic swarm systems.
e-print (2016), arXiv:1608.00695v3

4. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

5. Fernandes, M., Alexandre, L.A.: Robotchain: Using Tezos technol-
ogy for robot event management. Ledger 4, Supplement 1 (2019).
https://doi.org/10.5195/ledger.2019.175

6. Garattoni, L., Birattari, M.: Swarm robotics. In: Webster, J.G. (ed.) Wiley Ency-
clopedia of Electrical and Electronics Engineering. John Wiley & Sons, Hoboken,
NJ (2016)

7. Higgins, F., Tomlinson, A., Martin, K.M.: Survey on security challenges
for swarm robotics. In: Proceedings of the Fifth International Conference
on Autonomic and Autonomous Systems, pp. 307–312. IEEE Press (2009).
https://doi.org/10.1109/ICAS.2009.62

8. Johnson, D., Ntlatlapa, N., Aichele, C.: A simple pragmatic approach to mesh
routing using BATMAN. In: Proceedings of the 2nd IFIP International Symposium
on Wireless Communications and Information Technology in Developing Countries
(WCTID 2008) (2008)

9. Kashevnik, A., Teslya, N.: Blockchain-oriented coalition formation by CPS
resources: Ontological approach and case study. Electronics 7, 66 (2018).
https://doi.org/10.3390/electronics7050066

10. Millard, A.G., Joyce, R., Hilder, J.A., Fleşeriu, C., Newbrook, L., Li, W., McDaid,
L.J., Halliday, D.M.: The Pi-puck extension board: A Raspberry Pi interface for the
e-puck robot platform. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 741–748. IEEE Press (2017)

11. Mokhtar, A., Murphy, N., Bruton, J.: Blockchain-based multi-robot path plan-
ning. In: 2019 IEEE 5th World Forum on Internet of Things. pp. 584–589 (2019).
https://doi.org/10.1109/WF-IoT.2019.8767340

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep. (2008),
https://bitcoin.org/bitcoin.pdf, Accessed Aug. 11, 2018

13. Pacheco, A., Strobel, V., Dorigo, M.: A framework for swarm robotics experi-
mentation with Pi-puck robots and an Ethereum-based blockchain. Tech. Rep.
TR/IRIDIA/2020-001, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
(2020)

14. Queralta, J.P., Westerlund, T.: Blockchain-powered collaboration in heterogeneous
swarms of robots. e-print (2019), arXiv:1912.01711v2

15. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario.
In: Dastani, M., Sukthankar, G., André, E., Koenig, S. (eds.) Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS 2018). pp. 541–549. International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, USA (2018)

https://doi.org/10.1007/s11721-012-0075-2
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.5195/ledger.2019.175
https://doi.org/10.1109/ICAS.2009.62
https://doi.org/10.3390/electronics7050066
https://doi.org/10.1109/WF-IoT.2019.8767340
https://bitcoin.org/bitcoin.pdf


A Blockchain-controlled Physical Robot Swarm 13

16. Strobel, V., Castell Ferrer, E., Dorigo, M.: Blockchain technology se-
cures robot swarms: A comparison of consensus protocols and their re-
silience to Byzantine robots. Frontiers in Robotics and AI 7, 54 (2020).
https://doi.org/10.3389/frobt.2020.00054

17. Strobel, V., Dorigo, M.: Blockchain technology for robot swarms: A shared knowl-
edge and reputation management system for collective estimation. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) Swarm
Intelligence – Proceedings of ANTS 2018 – Eleventh International Conference.
Lecture Notes in Computer Science, vol. 11172, pp. 425–426. Springer, Cham,
Switzerland (2018). https://doi.org/10.1007/978-3-030-00533-7

18. Szilgyi, P.: EIP 225: Clique proof-of-authority consensus protocol (2017), https:
//github.com/ethereum/EIPs/issues/225, Accessed May 10, 2020

19. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: Dorigo, M., Birattari, M., Li, X.,
López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) Swarm Intelligence
– Proceedings of ANTS 2016 – Tenth International Conference. Lecture Notes
in Computer Science, vol. 9882, pp. 65–76. Springer, Cham, Switzerland (2016).
https://doi.org/10.1007/978-3-319-44427-7 6

20. White, R., Caiazza, G., Cortesi, A., Cho, Y., Christensen, H.: Black block recorder:
Immutable black box logging for robots via blockchain. IEEE Journal on Robotics
and Automation 4, 3812–3819 (2019). https://doi.org/10.1109/LRA.2019.2928780

https://doi.org/10.3389/frobt.2020.00054
https://doi.org/10.1007/978-3-030-00533-7
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1109/LRA.2019.2928780

	A Blockchain-Controlled Physical Robot Swarm Communicating via an Ad-Hoc Network

