Skip to main content

Robot Distancing: Planar Construction with Lanes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12421))

Abstract

We propose a solution to the problem of spatial interference between robots engaged in a planar construction task. Planar construction entails a swarm of robots pushing objects into a desired two-dimensional configuration. This problem is related to object clustering and sorting as well as collective construction approaches such as wall-building. In previous work we found robots were highly susceptible to collisions among themselves and with the boundary of the environment. Often these collisions led to deadlock and a dramatic reduction in task performance. To address these problems the solution proposed here subdivides the work area into lanes. Each robot determines its own lane and applies a novel control law to stay within it while nudging objects inwards towards the goal region. We show results using a realistic simulation environment. These results indicate that subdividing the arena into lanes can produce mild performance increases while being highly effective at keeping the robots separated. We also show that the introduction of lanes increases robustness to unforeseen obstacles in the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.pololu.com/docs/0J21.

  2. 2.

    A stadium consists of a rectangular region in the middle with semicircular ends.

  3. 3.

    The innermost and outermost lanes have one adjacent lane, while other lanes have two adjacent lanes.

References

  1. Beckers, R., Holland, O., Deneubourg, J.L.: From local actions to global tasks: stigmergy and collective robotics. In: Artificial Life IV, pp. 181–189. MIT Press, Cambridge (1994)

    Google Scholar 

  2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  4. Bruinsma, O.H.: An analysis of building behaviour of the termite Macrotermes subhyalinus (Rambur). Ph.D. thesis (1979)

    Google Scholar 

  5. Crabbe, F.L., Dyer, M.G.: Second-order networks for wall-building agents. In: International Joint Conference on Neural Networks (1999). IJCNN 1999, vol. 3, pp. 2178–2183. IEEE (1999)

    Google Scholar 

  6. Crane, K., Weischedel, C., Wardetzky, M.: The heat method for distance computation. Commun. ACM 60(11), 90–99 (2017)

    Article  Google Scholar 

  7. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: First International Confernce on the Simulation of Adaptive Behaviour, pp. 356–363. MIT Press, Cambridge (1990)

    Google Scholar 

  8. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organised aggregation without computation. Int. J. Robot. Res. 33(9), 1145–1161 (2014). https://doi.org/10.1177/0278364914525244

    Article  Google Scholar 

  9. Gregory, C., Vardy, A.: microUSV: a low-cost platform for indoor marine swarm robotics research. HardwareX (2020). https://doi.org/10.1016/j.ohx.2020.e00105

    Article  Google Scholar 

  10. Hamann, H.: Superlinear scalability in parallel computing and multi-robot systems: shared resources, collaboration, and network topology. In: Berekovic, M., Buchty, R., Hamann, H., Koch, D., Pionteck, T. (eds.) ARCS 2018. LNCS, vol. 10793, pp. 31–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77610-1_3

    Chapter  Google Scholar 

  11. Ibrahim, D., Vardy, A.: Adaptive task allocation for planar construction using response threshold model. In: Martín-Vide, C., Pond, G., Vega-Rodríguez, M.A. (eds.) Theory and Practice of Natural Computing, pp. 173–183. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34500-6_12

    Chapter  Google Scholar 

  12. Kazadi, S., Abdul-Khaliq, A., Goodman, R.: On the convergence of puck clustering systems. Robot. Auton. Syst. 38(2), 93–117 (2002)

    Article  Google Scholar 

  13. Kazadi, S., Wigglesworth, J., Grosz, A., Lim, A., Vitullo, D.: Swarm-mediated cluster-based construction. Complex Syst. 15(2), 157 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Ladley, D., Bullock, S.: The role of logistic constraints in termite construction of chambers and tunnels. J. Theoret. Biol. 234(4), 551 (2005). https://doi.org/10.1016/j.jtbi.2004.12.012

    Article  MathSciNet  Google Scholar 

  15. Lein, A., Vaughan, R.T.: Adaptive multi-robot bucket brigade foraging. In: Proceedings of the Eleventh International Conference on Artificial Life (ALife XI), August 2008

    Google Scholar 

  16. Maris, M., Boeckhorst, R.: Exploiting physical constraints: heap formation through behavioral error in a group of robots. In: IEEE/RSJ International Conference on Robots and Systems (IROS), vol. 3, pp. 1655–1660. IEEE Xplore (1996)

    Google Scholar 

  17. Martinoli, A., Ijspeert, A., Gambardella, L.: A probabilistic model for understanding and comparing collective aggregation mechanisms. In: Floreano, D., Nicoud, J.D.., Mondada, F. (eds.) Advances in Artificial Life. Proceedings of the 5th European Conference on Artificial Life (ECAL). Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48304-7_77

  18. Mayya, S., Pierpaoli, P., Egerstedt, M.: Voluntary retreat for decentralized interference reduction in robot swarms. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9667–9673. IEEE (2019)

    Google Scholar 

  19. Melhuish, C., Holland, O., Hoddell, S.: Collective sorting and segregation in robots with minimal sensing. In: 5th International Conference on the Simulation of Adaptive Behaviour. MIT Press, Cambridge (1998)

    Google Scholar 

  20. Melhuish, C., Sendova-Franks, A.B., Scholes, S., Horsfield, I., Welsby, F.: Ant-inspired sorting by robots: the importance of initial clustering. J. R. Soc. Interface 3(7), 235–242 (2006)

    Article  Google Scholar 

  21. Melhuish, C., Wilson, M., Sendova-Franks, A.: Patch sorting: multi-object clustering using minimalist robots. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 543–552. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44811-X_62

    Chapter  Google Scholar 

  22. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3400–3407. IEEE Xplore (May 2011)

    Google Scholar 

  23. Østergaard, E.H., Sukhatme, G.S., Matarić, M.J.: Emergent bucket brigading - a simple mechanism for improving performance in multi-robot constrained-space foraging tasks. In: In Autonomous Agents, pp. 2219–2223 (2001)

    Google Scholar 

  24. Petersen, K.H., Napp, N., Stuart-Smith, R., Rus, D., Kovac, M.: A review of collective robotic construction. Sci. Robot. 4(28) (2019). https://doi.org/10.1126/scirobotics.aau8479. http://robotics.sciencemag.org/content/4/28/eaau8479

  25. Rohmer, E., Singh, S.P.N., Freese, M.: CoppeliaSim (formerly V-REP): a versatile and scalable robot simulation framework. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2013). http://www.coppeliarobotics.com

  26. Schmolke, A., Mallot, H.: Territory formation in mobile robots. In: Artificial Life VIII, pp. 256–269 (2002)

    Google Scholar 

  27. Schneider-Fontán, M., Matarić, M.: Territorial multi-robot task division. IEEE Trans. Robot. Autom. 14(5), 815–822 (1998)

    Article  Google Scholar 

  28. Shell, D., Matarić, M.: On foraging strategies for large-scale multi-robot systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)

    Google Scholar 

  29. Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., et al.: An autonomous construction system with deformable pockets. Technical report, IRIDIA Technical Report Series, January, 2014–002. IRIDIA, Université Libre de Bruxelles, Brussels (2014)

    Google Scholar 

  30. Stewart, R.L., Russell, R.A.: A distributed feedback mechanism to regulate wall construction by a robotic swarm. Adapt. Behav. 14(1), 21–51 (2006)

    Article  Google Scholar 

  31. Strickland, C., Churchill, D., Vardy, A.: A reinforcement learning approach to multi-robot planar construction. In: IEEE International Symposium on Multi-Robot and Multi-Agent Systems (2019)

    Google Scholar 

  32. Vardy, A.: Orbital construction: swarms of simple robots building enclosures. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS* W), pp. 147–153 (2018)

    Google Scholar 

  33. Vardy, A.: Landmark-guided shape formation by a swarm of robots. In: Correll, N., Schwager, M., Otte, M. (eds.) Distributed Autonomous Robotic Systems. SPAR, vol. 9, pp. 371–383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05816-6_26

    Chapter  Google Scholar 

  34. Vardy, A., Vorobyev, G., Banzhaf, W.: Cache consensus: rapid object sorting by a robotic swarm. Swarm Intell. 8(1), 61–87 (2014). http://www.cs.mun.ca/av/supp/si12

    Article  Google Scholar 

  35. Vardy, A., Ibrahim, D.S.: A swarm of simple robots constructing planar shapes. arXiv preprint arXiv:2004.13888 (2020)

  36. Verret, S., Zhang, H., Meng, M.Q.H.: Collective sorting with local communication. In: IEEE/RSJ International Conference on Robots and Systems (IROS). IEEE Xplore (2004)

    Google Scholar 

  37. Wang, T., Zhang, H.: Multi-robot collective sorting with local sensing. In: IEEE Intelligent Automation Conference (IAC) (2003)

    Google Scholar 

  38. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)

    Article  Google Scholar 

  39. Wurm, K.M., Stachniss, C., Burgard, W.: Coordinated multi-robot exploration using a segmentation of the environment. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1160–1165 (2008)

    Google Scholar 

Download references

Acknowledgments

Funding provided from the Natural Sciences and Engineering Research Council of Canada (NSERC) under Discovery Grant RGPIN-2017-06321. Thanks also to the constructive feedback of the ANTS 2020 reviewers who helped to clarify the contents presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Vardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vardy, A. (2020). Robot Distancing: Planar Construction with Lanes. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60376-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60375-5

  • Online ISBN: 978-3-030-60376-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics