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Abstract. The overwhelming majority of ant colony optimization
approaches from the literature is exclusively based on learning from pos-
itive examples. Natural examples from biology, however, indicate the
potential usefulness of negative learning. Several research works have
explored this topic over the last two decades in the context of ant colony
optimization, with limited success. In this work we present an alterna-
tive proposal for the incorporation of negative learning in ant colony
optimization. The results obtained for the capacitated minimum domi-
nating set problem indicate that this approach can be quite useful. More
specifically, our extended ant colony algorithm clearly outperforms the
standard approach. Moreover, we were able to improve the current state-
of-the-art results in 10 out of 36 cases.

1 Introduction

Combinatorial optimization (CO) problems are of utmost importance in many
real-life scenarios. Large-scale instances of hard CO problems are often solved by
heuristic methods. The family of metaheuristics [2] includes techniques based on
local search (such as tabu search) and it includes a whole range of bio-inspired
techniques such as ant colony optimization and evolutionary algorithms. In this
paper we deal with the metaheuristic ant colony optimization (ACO) [5,6], whose
development was inspired by the shortest path finding behavior of natural ant
colonies. ACO, which is a metaheuristic based on learning, works as follows.
At each iteration, a number of artificial ants generate solutions to the tackled
optimization problem in a probabilistic way. This is done based on two types
of information: greedy information and pheromone information. Then, the best
ones of these solutions are used to update the pheromone values, with the aim
of moving the probability distribution used for generating solutions to areas of
the search space in which high-quality solutions can be found.

As in most metaheuristics based on learning, the type of learning generally
used in ACO is positive learning, that is, the algorithm tries to learn which
components are necessary for assembling high-quality solutions. Nevertheless,
learning from negative examples (negative learning) seems to play an important
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role in biological self-organizing systems. Pharaoh ants (Monomorium pharao-
nis), for example, make use of negative trail pheromone in order to deploy ‘no
entry’ signals to mark unrewarding foraging paths [15]. Another example is the
use of anti-pheromone hydrocarbons produced by male tsetse flies. These anti-
pheromones play an important role in tsetse communications [17]. As already
noted in [18], it might therefore be possible to boost the performance of ACO
with an additional mechanism that learns (or marks) undesirable components by
means of a negative feedback mechanisms.

The research community has made several attempts to take benefit from neg-
ative learning. Maniezzo [11] and Cordón et al. [4] were the first ones to introduce
an active decrease of pheromone values based on low-quality solutions. Mont-
gomery and Randall [12] proposed three different anti-pheromone strategies,
partially inspired by previous works [4,8]. In their first approach some amount
of pheromone is removed from the solution components of the worst solution in
each iteration. Their second approach makes explicit use of negative pheromone
in addition to the standard pheromone. Finally, their third approach allocates
a small number of ants at each iteration to explore the use of solution compo-
nents with lower pheromone values, without adding dedicated anti-pheromones.
Unfortunately, the experimental evaluation did not show a clear advantage of
any of the three strategies over standard ACO. Simons and Smith [19] explored
different extensions of [12]. They state, however, that nearly all their approaches
were proved counter-intuitive by the results. The only approach that showed
some usefulness was to make use of a high amount of anti-pheromone in the
very early stages of the search process. In [16], Rojas-Morales et al. propose
an extension of an ACO algorithm for the multidimensional knapsack problem
based on opposite learning. In a first phase, the algorithm builds anti-pheromone
values whose intention it is to repel the ACO algorithm during the second phase
from solution components that seem locally attractive (due to a rather high
heuristic value) but that lead to low-quality solutions. Unfortunately, the results
do not show a consistent improvement over standard ACO. Finally, note that
earlier strategies based on opposition-based learning were tested on four small
TSP instances in [10].

In this paper we introduce a conceptually new way of making use of negative
learning in ACO, in the context of the so-called capacitated minimum dominat-
ing set (CapMDS) problem [14]. Our results show that the performance of the
standard ACO algorithm (without negative learning) is significantly improved
for most of the considered problem instance types. Moreover, the current state-
of-the-art algorithm is improved in the context of 10 out of 36 cases.

2 The CapMDS Problem

Before introducing the CapMDS problem and the developed algorithms, let us
briefly recall some necessary definitions and notions from graph theory. Hence-
forth, G = (V,E) denotes an undirected graph with a set V = {v1, v2, · · · , vn}
of n vertices, and a set E of edges. We assume that the given graph neither
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contains self-loops nor multi-edges. Two vertices u, v ∈ V are called neighbors—
that is, they are adjacent—if and only if (u, v) = (v, u) ∈ E. Furthermore,
N(v) := {u ∈ V | (v, u) ∈ E} is called the (open) neighborhood of v and denotes
the set of neighbors of v ∈ V . In contrast, the closed neighborhood N [v] of a
vertex v ∈ V is N [v] := N(v)∪{v}. The degree deg(v) of v is defined as the car-
dinality of the set of neighbors of v, that is, deg(v) = |N(v)|. Any subset S ⊆ V
is called a dominating set of G if each vertex v ∈ V \ S is adjacent to at least
one vertex from S. A vertex from S is called a dominator. Given an undirected
graph G = (V,E), the classical minimum dominating set (MDS) problem asks
to find a smallest-size dominating set S ⊆ V .

A problem instance of the CAPMDS problem is given by a tuple (G,Cap)
that consists of an undirected (simple) graph G = (V,E) and a capacity function
Cap : V → N. This capacity function assigns a positive integer Cap(v) > 0 to
each vertex v ∈ V , indicating the maximum number of adjacent vertices this
vertex is allowed to dominate in a valid solution.

A solution S to an instance (G,Cap) is a tuple (DS , {CS(v) | v ∈ DS}),
where DS ⊆ V is the set of selected dominators, and {CS(v) | v ∈ DS} is a set
that contains for each dominator v ∈ DS the (sub-)set CS(v) ⊆ N(v) of those of
its neighbors that are (chosen to be) dominated by v. The following conditions
have to be fulfilled in order for S to be a valid solution:

1. DS ∪
(⋃

v∈DS CS(v)
)

= V , that is, all vertices from V are either chosen to
be a dominator, or are dominated by at least one dominator.

2. |CS(v)| ≤ Cap(v) for all v ∈ DS , that is, all chosen dominators dominate at
most Cap(v) of their neighbors.

Finally, the objective function value (to be minimized) is defined as f(S) := |DS |.

ILP Model for the CAPMDS Problem. The following integer linear program
(ILP) is reproduced from [13]. The model is presented because it plays an impor-
tant role for the negative learning mechanism that is presented later. It works
on the following sets of binary variables. First, a binary variable xv is associated
to each vertex v ∈ V indicating whether or not v is selected as a dominator.
Second, the model contains for each edge (v, v′) ∈ E two binary variables yv,v′

and yv′,v. Variable yv,v′ takes value one if vertex v is chosen to dominate vertex
v′; similarly for yv′,v. The CapMDS problem can then be stated as follows:

minimize
∑

v∈V

xv (1)

s.t.
∑

v′∈N(v)

yv′,v ≥ 1 − xv ∀v ∈ V (2)

∑

v′∈N(v)

yv,v′ ≤ Cap(v) ∀v ∈ V (3)

yv,v′ ≤ xv ∀v ∈ V, v′ ∈ N(v) (4)
xv, yv,v′ ∈ {0, 1} (5)
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Hereby, constraint (2) ensures that all non-chosen vertices must be dominated by
at least one dominator, whereas constraint (3) limits the total number of vertices
dominated by a particular vertex v to Cap(v). Consequently, a dominator v can
dominate at most Cap(v) vertices from its (open) neighborhood.

3 Proposed Approach

First of all, we present a standard ACO approach (without negative learning) for
the CapMDS problem. We chose a MAX -MIN Ant System (MMAS) imple-
mented in the Hypercube Framework [1] for this purpose. In the context of this
algorithm, the construction of a solution S is done in a step-by-step manner. At
each construction step, first, exactly one new dominator v ∈ V \ DS is chosen.
In the second part of the construction step, it is decided which ones of the so-far
non-dominated neighbors of v will be dominated by v. Therefore, the pheromone
model T used by our algorithm consists of the following values:

1. A value τv for each v ∈ V . These values are used to choose dominators.
2. Values τv,v′ and τv′,v for each edge (v, v′) ∈ E. These values are used in the

second part of each construction step for deciding which ones of its neighbors
a newly chosen dominator will dominate.

In general terms, a MMAS algorithm (when implemented in the Hypercube
Framework) works as follows (see also Algorithm 1). At each iteration, first, na

solutions are probabilistically generated both based on pheromone and on greedy
information. Second, the pheromone values are modified using (at most) three
solutions: (1) the iteration-best solution Sib, (2) the restart-best solution Srb,
and (3) the best-so-far solution Sbs. The pheromone update is done with the aim
to focus the search process of the MMAS algorithm on areas of the search space
with high-quality solutions. Note that the algorithm also performs restarts when
necessary—that is, a re-initializations of the pheromone values is performed once
convergence is detected. Restarts are controlled by a convergence measure called
the convergence factor (cf) and by a Boolean control variable called bs update.
The implementation of all these components for the CapMDS is detailed in the
following.

InitializePheromoneValues(): In this function all pheromone values τv for v ∈
V are initialized to 0.5. Moreover, all pheromone values τv,v′ and τv′,v for all
(v, v′) ∈ E are equally initialized to 0.5.

Construct Solution(): The construction of a solution starts with an empty solution
S = (DS = ∅, ∅). Moreover, the set of non-dominated neighbors of each vertex
v ∈ V , denoted by NDv, is initialized to N(v). At each construction step, first,
one vertex v∗ is chosen from a set O (options) that includes all those vertices v
that still have non-dominated neighbors and that do not already form part of
DS :

O := {v ∈ V | NDv 
= ∅, v /∈ DS} (6)
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Algorithm 1. MMAS for the CapMDS problem
1: input: a problem instance (G, Cap)
2: Sbs := null, Srb := null, cf := 0, bs update := false
3: InitializePheromoneValues()
4: while termination conditions not met do
5: S iter := ∅
6: for k = 1, . . . , na do
7: Sk := Construct Solution()
8: S iter := S iter ∪ {Sk}
9: end for

10: Sib := argmin{f(S) | S ∈ S iter}
11: if f(Sib) < f(Srb) then Srb := Sib

12: if f(Sib) < f(Sbs) then Sbs := Sib

13: ApplyPheromoneUpdate(cf, bs update, Sib,Srb,Sbs)
14: cf := ComputeConvergenceFactor()
15: if cf > 0.9999 then
16: if bs update = true then
17: Srb := null, and bs update := false
18: InitializePheromoneValues()
19: else
20: bs update := true
21: end if
22: end if
23: end while
24: output: Sbs, the best solution found by the algorithm

Note that the solution construction process stops once O = ∅. The greedy func-
tion value η(v) of a vertex v ∈ O is defined as η(v) := min{Cap(v), |NDv|} + 1.
Based on this greedy function, the probability for a vertex v ∈ O to be selected
is determined as follows:

pstep1(v) :=
η(v) · τv∑

v′∈O η(v′) · τv′
(7)

Given the probabilities from Eq. (7), a vertex v∗ ∈ O is chosen in the following
way. First a value 0 ≤ r ≤ 1 is drawn uniformly at random. In case r ≤ drate, the
vertex with the highest probability is chosen deterministically. Otherwise, a ver-
tex is chosen randomly according to the probabilities (roulette-wheel-selection).
Hereby, the determinism rate drate ≤ 1 is a parameter of the algorithm. Note
that after choosing v∗, the sets of non-dominated neighbors of the neighbors of
v∗ are updated by removing v∗.

In the second part of each construction step, a set of min{Cap(v∗), |NDv∗ |}
non-dominated neighbors of v∗ is chosen and placed into CS(v∗) as follows.
In case |NDv∗ | ≤ Cap(v∗), we set CS(v∗) := NDv∗ . Otherwise, vertices are
sequentially selected from NDv∗ in the following way. First, the probability for
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Table 1. Setting of κib, κrb, and κbs depending on the convergence factor cf and the
Boolean control variable bs update

bs update = false bs update = true

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

each vertex v ∈ NDv∗ to be selected is determined as follows:

pstep2(v) :=
(|NDv| + 1) · τv∗,v∑

v′∈NDv∗ (|NDv′ | + 1) · τv∗,v′
(8)

Then, given the probabilities from Eq. (8), a vertex v̂ ∈ NDv∗ is chosen in the
same way as outlined above in the context of the first part of the construction
step. Vertex v̂ is then added to an initially empty set CS(v∗), the respective ND-
sets are updated, the probabilities from Eq. (8) are recalculated, and the next
vertex from NDv∗ is chosen. This process stops once min{Cap(v∗), |NDv∗ |} are
selected. Finally, CS(v∗) is added to solution S, and the solution construction
process proceeds with the next construction step.

ApplyPheromoneUpdate(cf, bs update, Sib, Srb, Sbs): This is a standard proce-
dure in any MMAS algorithm implemented in the Hypercube Framework. In
particular, solutions Sib, Srb, and Sbs are used for the pheromone update. The
influence of each of these solutions on the pheromone update is determined on
the basis of the convergence factor (cf) and the value of bs update (see Table 1).
Each pheromone value τv is updated as follows: τv := τv + ρ · (ξv − τv), where
ξv := κib · Δ(Sib, v) + κrb · Δ(Srb, v) + κbs · Δ(Sbs, v). Hereby, κib is the weight
of solution Sib, κrb the one of solution Srb, and κbs the one of solution Sbs.
Moreover, Δ(S, v) evaluates to 1 if and only if v ∈ DS (that is, v is chosen as
a dominator). Otherwise, the function evaluates to 0. Note also that the three
weights must be chosen such that κib + κrb + κbs = 1. Finally, note that in the
case of pheromone values τv,v′ , the pheromone update is the same, just that func-
tions Δ(S, v) are replaced by functions Δ(S, v, v′). Hereby, function Δ(S, v, v′)
evaluates to 1 if and only if v ∈ DS and v′ ∈ CS(v) (that is, dominator v is
chosen to dominate its neighbor v′ in solution S). After the pheromone update,
pheromone values that exceed τmax = 0.99 are set back to τmax, and pheromone
values that have fallen below τmin = 0.01 are set back to τmin. This prevents the
algorithm from reaching the state of complete convergence.
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ComputeConvergenceFactor(T ): The value of the convergence factor cf is com-
puted, in a standard way, on the basis of the pheromone values:

cf := 2

⎛

⎝

⎛

⎝

∑

τ∈T
max{τmax − τ, τ − τmin}

|T | · (τmax − τmin)

⎞

⎠ − 0.5

⎞

⎠ (9)

Hereby, T stands for the set of all τv-values and all τv,v′-values. With this for-
mula, the value of cf results in zero, when all pheromone values are set to 0.5.
In contrast, when all pheromone values have either value τmin or τmax, the value
cf evaluates to one. In all other cases, cf has a value between 0 and 1. This
completes the description of all components of the proposed algorithm.

3.1 Adding Negative Learning

First of all, for all pheromone values τv (v ∈ V ) we introduce a negative
pheromone value τneg

v . Moreover, for all pheromone values τv,v′ we also introduce
the negative version τneg

v,v′ . In contrast to the standard pheromone values, these
negative pheromone values are initialized to τmin at the start of the algorithm,
and whenever the algorithm is restarted (which still depends exclusively on the
standard pheromone values).

The negative pheromone values are used in the following way to change the
probabilities in both phases of each step for the construction of a solution S.
Remember that the first phase concerns the choice of the next dominator v∗,
and the second phase concerns the choice of a set CS(v∗) of so-far uncovered
neighbors of v∗ that v∗ will dominate. The updated formula for calculating the
probabilities in the first phase is as follows (compare to Eq. 7):

pstep1(v) :=
η(v) · τv · (1 − τneg

v )
∑

v′∈O η(v′) · τv′ · (1 − τneg
v′ )

(10)

In the second phase of each construction step CS(v∗) is sequentially filled with
vertices taken from NDv∗ (the set of currently uncovered neighbors of v∗) in the
following way. First, the probability for each vertex v ∈ NDv∗ to be selected is
determined as follows (compare to Eq. 8):

pstep2(v) :=
(|NDv| + 1) · τv∗,v · (1 − τneg

v∗,v)
∑

v′∈NDv∗ (|NDv′ | + 1) · τv∗,v′ · (1 − τneg
v∗,v′)

(11)

Another change in comparison to the standard way of generating solutions
is that, during this second phase, only vertices whose probability pstep2(v) is
greater or equal to 0.001 can be selected. This makes it possible to generate
solutions in which a vertex selected as a dominator might not be chosen to
dominate as many of its uncovered neighbors as possible in that moment.

As mentioned before, we strongly believe that the information that is used to
determine the negative pheromone values should originate from an algorithmic
component different to the ACO algorithm itself. In the context of the CapMDS
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problem we therefore propose the following. At each iteration of our MMAS
algorithm, the set of solutions generated at the incumbent iteration (S iter) is used
for generating a subinstance of the tackled problem instance. Such a subinstance
Isub is a tuple (Dsub, {Csub(v) | v ∈ Dsub}) where

– Dsub :=
⋃

S∈Siter
DS

– Csub(v) :=
⋃

S ∈ Siter

s.t. v ∈ DS

CS(v)

After generating the na solutions per iteration, the ILP solver CPLEX is used
(with a time limit of tILP CPU seconds) to solve the corresponding subinstance
(if possible) to optimality. Otherwise, the best solution found within the allotted
computation time is returned. In any case, the returned solution is denoted by
SILP. In order to solve the subinstance, the ILP model from Sect. 2 is used with
the following additional restrictions. All variables xv such that v /∈ Dsub are set
to zero. Moreover, all variables xv,v′ such that either v /∈ D or v′ /∈ Csub(v) are
set to zero too.

After obtaining solution SILP both the standard pheromone value update and
the update of the negative pheromone values is performed. The update of the
negative pheromone values is done with the same formula as in the case of the
standard pheromone update (see the description of function ApplyPheromone-
Update(cf, bs update, Sib, Srb, Sbs)). Only the learning rate ρ is replaced by a
negative learning rate ρneg, and the definition of the ξv (respectively ξv,v′) val-
ues changes. In particular, ξv is set to 1 for all v ∈ Dsub with v /∈ DSILP

. In all
other cases ξv is set to 0. Moreover, ξv,v′ is set to 1, for all v′ ∈ Csub(v) with
v′ /∈ CSILP

(v). In all other cases ξv,v′ is set to 0. In other words, those solution
components that form part of the subinstance (and, therefore, form part of at
least one of the solutions generated by MMAS) but that do not form part of the
(possibly optimal) solution SILP to the subinstance, are penalized.

Note that—in contrast to the standard MMAS algorithm, which is simply
denoted by ACO in the following section—the algorithm making use of nega-
tive learning is henceforth denoted by ACOneg. Finally, not taking profit from
solution SILP in an additional, more direct, way may result in wasting valuable
information. Therefore, we also test an extended version of ACOneg, henceforth
denoted by ACO+

neg, that updates solutions Srb and Sbs at each iteration with
solution SILP if appropriate.

4 Experimental Evaluation

All experiments concerning ACO, ACOneg and ACO+
neg were performed on a

cluster of machines with Intel® Xeon® CPU 5670 CPUs with 12 cores of
2.933 GHz and a minimum of 32 GB RAM. Moreover, for solving the subin-
stances in ACOneg and ACO+

neg we used CPLEX 12.8 in one-threaded mode.
The proposed algorithms were evaluated on the largest ones of the general

graphs benchmark set for the CapMDS problem from [14]. These graphs are
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Table 2. Outcome of parameter tuning.

Algorithm na drate ρ ρneg tILP

ACO 5 0.9 0.1 n.a n.a.

ACOneg 20 0.7 0.1 0.3 10.0

ACO+
neg 20 0.6 0.1 0.2 5.0

characterized by a number of vertices (n), a number of edges (m), a vertex
capacity type (uniform vs. variable), and a capacity. In the case of uniform
capacities, graphs with three different capacities (2, 5 and α) exist. Hereby, α
refers to the average degree of the corresponding graph. In the case of variable
capacities, the vertex capacities are—for each vertex—randomly chosen from the
following three intervals: (2, 5), (α/5, α/2) and [1, α]. For each combination of
these graph characteristics, the benchmark set consists of 10 randomly generated
graphs.

Algorithm Tuning. All three algorithm variants require parameter values to
be set to well-working options. In particular, all three algorithm versions need
parameter values for na (the number of solutions per iteration), drate (the deter-
minism rate for solution construction), and ρ (the learning rate). Additionally,
ACOneg and ACO+

neg require values for parameters ρneg (the negative learning
rate) and tILP (the time limit, in CPU seconds, for CPLEX at each iteration).
For the purpose of parameter tuning we made use of irace [9], which is a sci-
entific tool for parameter tuning. This tool was used for generating one single
parameter setting for each algorithm. As tuning instances we chose the first (out
of 10) instances for each combination of the four input graph characteristics.
Moreover, a budget of 2000 applications was given to irace. The parameter value
domains were fixed as follows: na ∈ {3, 5, 10, 20}, drate ∈ {0.1, 0.2, . . . , 0.8, 0.9},
ρ, ρneg ∈ {0.1, 0.2, 0.3}, and tILP ∈ {2.0, 3.0, 5.0, 10.0} (in seconds). The param-
eter value settings determined by irace are shown in Table 2.

Numerical Results. Each algorithm was applied exactly once (with a time limit
of 1000 CPU seconds) to each problem instance. The results, averaged over 10
instances per table row, are shown in Table 3 (uniform capacity graphs) and in
Table 4 (variable capacity graphs). While the two tables separate the instances
with respect to the vertex capacity type (uniform vs. variable), the first three
columns of each table provide information about the remaining three input graph
characteristics (n, m, and vertex capacity). The fourth table column provides
information about the best result known from the literature, while the fifth and
sixth table columns present the results of CMSA, which is the current state-of-
the-art algorithm from [13]. Both the results of CMSA and of the three ACO
versions are shown by means of the average solution quality and the average
computation time needed for producing these results.
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Table 3. Results for general graphs with uniform capacity.

n m Cap. Best known CMSA ACO ACOneg ACO+
neg

Avg. Time Avg. Time Avg. Time Avg. Time

800 1000 2 267.0 267.0 3.6 285.3 136.2 267.0 8.4 267.0 2.5

800 2000 2 267.0 267.0 3.9 269.4 80.3 269.3 129.3 267.0 67.8

800 5000 2 267.0 267.0 3.2 267.0 59.0 271.1 192.1 267.0 119.4

1000 1000 2 334.0 334.0 7.9 364.0 157.1 334.0 7.2 334.0 0.6

1000 5000 2 334.0 334.0 6.5 334.2 88.0 384.6 50.3 334.0 126.9

1000 10000 2 334.0 334.0 5.8 334.0 32.4 379.5 176.7 337.2 136.7

800 1000 5 242.5 243.1 205.6 262.8 113.7 245.5 89.2 244.4 76.1

800 2000 5 162.8 162.8 574.7 177.0 116.1 163.2 61.0 161.9∗ 79.1

800 5000 5 134.0 134.0 4.7 135.3 72.4 158.7 6.3 134.0 160.2

1000 1000 5 333.7 333.7 10.5 362.8 141.2 333.7 8.8 333.7 0.6

1000 5000 5 167.0 167.0 40.8 172.2 101.1 206.3 61.4 167.0 173.6

1000 10000 5 167.0 167.0 3.7 167.8 67.3 188.4 8.6 167.0 102.7

800 1000 α 267.0 267.0 4.6 284.0 153.8 267.0 10.1 267.0 2.8

800 2000 α 162.8 162.8 537.3 178.8 93.0 163.4 73.8 162.0∗ 69.7

800 5000 α 91.1 93.0 717.9 92.9 62.8 90.9 74.0 89.2∗ 104.3

1000 1000 α 334.0 334.0 13.7 365.1 175.2 334.0 6.9 334.0 0.6

1000 5000 α 132.5 135.0 782.9 137.3 82.0 131.6 65.4 127.3∗ 116.3

1000 10000 α 81.3 86.8 518.7 82.6 67.9 87.9 98.4 80.7∗ 133.1

In order to facilitate an interpretation of these results we provide the cor-
responding critical difference (CD) plots [3]. First, the Friedman test was used
to compare the three approaches simultaneously. As a consequence of the rejec-
tion of the hypothesis that the techniques perform equally, the corresponding
pairwise comparisons were performed using the Nemenyi post-hoc test [7]. The
obtained results are graphically shown by means of the above-mentioned CD
plots in Fig. 1. In these plots, each considered algorithm variant is placed on
the horizontal axis according to its average ranking for the considered subset of
problem instances. The performances of those algorithm variants that are below
the critical difference threshold (computed with a significance level of 0.05) are
considered as statistically equivalent; see the horizontal bars joining the markers
of the respective algorithm variants.

The graphic in Fig. 1(a) shows the CD plot for the uniform capacity instances,
and the one in Fig. 1(b) for the variable capacity instances. In both graphics
it can be seen that both algorithm variants with negative learning (ACOneg

and ACO+
neg) significantly improve over the standard ACO approach. Moreover,

ACO+
neg improves over ACOneg with statistical significance. This is also the

general picture given by the numerical results in Tables 3 and 4.
Interestingly, when separating the instances according to different graph den-

sities, it can be noticed that negative learning is especially useful in the context
of sparse graphs. In contrast, when moving towards dense graphs the efficacy of
negative learning is reduced. In the context of graphs with uniform capacities,
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Table 4. Results for general graphs with variable capacity.

n m Cap. Best known CMSA ACO ACOneg ACO+
neg

Avg. Time Avg. Time Avg. Time Avg. Time

800 1000 (2, 5) 248.1 248.2 79.2 269.2 131.7 251.8 47.4 249.9 68.6

800 2000 (2, 5) 181.2 181.5 341.7 195.0 98.7 180.8 73.1 179.8∗ 79.7

800 5000 (2, 5) 134.1 134.1 28.1 139.1 99.6 138.4 127.3 134.1 94.3

1000 1000 (2, 5) 333.8 333.8 3.9 365.6 146.9 333.8 8.8 333.8 1.9

1000 5000 (2, 5) 169.0 169.0 85.1 182.8 86.3 171.2 109.7 169.6 105.0

1000 10000 (2, 5) 167.0 167.0 27.5 168.4 92.3 198.3 7.7 167.0 170.1

800 1000 (α/5, α/2) 400.0 400.0 2.6 409.3 112.5 400.2 66.7 400.0 0.8

800 2000 (α/5, α/2) 273.4 273.4 6.5 283.2 87.5 274.6 101.6 273.4 7.6

800 5000 (α/5, α/2) 115.0 115.1 178.6 123.0 83.7 116.5 77.1 115.0 85.7

1000 1000 (α/5, α/2) 500.0 500.0 8.6 517.7 122.2 500.0 11.2 500.0 1.0

1000 5000 (α/5, α/2) 168.1 168.1 77.4 181.3 128.7 170.9 105.4 168.8 92.2

1000 10000 (α/5, α/2) 104.7 107.1 247.9 104.8 97.1 108.6 131.0 95.6∗ 121.3

800 1000 [1, α] 300.2 300.2 4.0 316.0 144.9 300.2 6.8 300.2 0.5

800 2000 [1, α] 186.2 186.2 442.6 204.9 105.3 187.3 61.5 185.8∗ 63.9

800 5000 [1, α] 98.1 98.1 683.7 101.7 63.3 96.8 84.4 95.6∗ 80.2

1000 1000 [1, α] 400.8 400.8 6.4 409.6 141.5 400.8 7.3 400.8 0.5

1000 5000 [1, α] 143.8 143.8 866.9 151.9 95.4 141.4 101.1 140.6∗ 98.9

1000 10000 [1, α] 90.1 90.1 541.8 88.2 66.8 87.8 132.1 85.6∗ 108.0

Fig. 1. Critical difference plots
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it is even the case that standard ACO outperforms ACOneg for dense graphs.
This is shown in the context of uniform capacity graphs in Figs. 1(c) and (d).

5 Conclusions and Outlook

In this paper we introduced a new approach for making use of negative learning
in ant colony optimization. This approach builds, at each iteration, a subinstance
of the original problem instance by merging the solution components found in the
solutions generated by the ant colony optimization algorithm in that iteration.
Then it uses a different optimization technique—CPLEX was used here—for
finding the best solution in this subinstance. The solution components from the
subinstance that do not form part of this solution are penalized by means of
increasing their negative pheromone values. The proposed approach is shown to
be very beneficial for the capacitated minimum dominating set problem.

Future work will center along two lines. First, we plan to study why this new
approach is more useful in sparse graphs. And second, we plan to apply this
approach to a whole range of different combinatorial optimization problems.
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