Skip to main content

On the Effects of Minimally Invasive Collision Avoidance on an Emergent Behavior

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2020)

Abstract

Swarms of autonomous agents are useful in many applications due to their ability to accomplish tasks in a decentralized manner, making them more robust to failures. Due to the difficulty in running experiments with large numbers of hardware agents, researchers typically resort to simulations with simplifying assumptions. While some assumptions are tolerable, we feel that two assumptions have been overlooked: one, that agents take up physical space, and two, that a collision avoidance algorithm is available to add safety to an existing algorithm. While there do exist minimally invasive collision avoidance algorithms designed to add safety while minimizing interference in the intended behavior, we show they can still cause unexpected interference. We use an illustrative example with a double-milling behavior and show, through simulations, that the collision avoidance can still cause unexpected interference and careful parameter tuning is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arul, S.H., et al.: LSwarm: efficient collision avoidance for large swarms with coverage constraints in complex urban scenes. IEEE Robot. Autom. Lett. 4(4), 3940–3947 (2019). https://doi.org/10.1109/lra.2019.2929981

    Article  Google Scholar 

  2. Banjac, G., Goulart, P., Stellato, B., Boyd, S.: Infeasibility detection in the alternating direction method of multipliers for convex optimization. J. Optim. Theory Appl. 183(2), 490–519 (2019). https://doi.org/10.1007/s10957-019-01575-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016). https://doi.org/10.1016/j.neucom.2015.05.116

    Article  Google Scholar 

  4. Bonabeau, E., Marco, D.d.R.D.F., Dorigo, M., Theraulaz, G., et al.: Swarm Intelligence: From Natural to Artificial Systems, no. 1, Oxford University Press, Oxford (1999)

    Google Scholar 

  5. Borrmann, U., Wang, L., Ames, A.D., Egerstedt, M.: Control barrier certificates for safe swarm behavior. IFAC-PapersOnLine 48(27), 68–73 (2015). https://doi.org/10.1016/j.ifacol.2015.11.154

    Article  Google Scholar 

  6. Cao, Y., Ren, W.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57(1), 33–48 (2012). https://doi.org/10.1109/TAC.2011.2146830

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrillo, J., D’Orsogna, M., Panferov, V.: Double milling in self-propelled swarms from kinetic theory. Kinetic Relat. Models 2(2), 363–378 (2009). https://doi.org/10.3934/krm.2009.2.363

    Article  MathSciNet  MATH  Google Scholar 

  8. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998). https://doi.org/10.1177/027836499801700706

    Article  Google Scholar 

  9. Ghapani, S., Mei, J., Ren, W., Song, Y.: Fully distributed flocking with a moving leader for Lagrange networks with parametric uncertainties. Automatica 67, 67–76 (2016). https://doi.org/10.1016/j.automatica.2016.01.004

    Article  MathSciNet  MATH  Google Scholar 

  10. Mier-Y-Teran-Romero, L., Forgoston, E., Schwartz, I.B.: Coherent pattern prediction in swarms of delay-coupled agents. IEEE Trans. Robot. 28(5), 1034–1044 (2012). https://doi.org/10.1109/TRO.2012.2198511

    Article  Google Scholar 

  11. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006). https://doi.org/10.1109/TAC.2005.864190

    Article  MathSciNet  MATH  Google Scholar 

  12. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. New York (1987). https://doi.org/10.1145/37402.37406, http://portal.acm.org/citation.cfm?doid=37402.37406

  13. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: an operator splitting solver for quadratic programs. ArXiv e-prints, November 2017

    Google Scholar 

  14. Szwaykowska, K., Schwartz, I.B., Mier-Y-Teran Romero, L., Heckman, C.R., Mox, D., Hsieh, M.A.: Collective motion patterns of swarms with delay coupling: theory and experiment. Phys. Rev. E 93(3), 032307 (2016). https://doi.org/10.1103/PhysRevE.93.032307

    Article  MathSciNet  Google Scholar 

  15. Taylor, C., Luzzi, C., Nowzari, C.: On the effects of collision avoidance on an emergent swarm behavior. arXiv preprint arXiv:1910.06412 (2019)

  16. Taylor, C., Luzzi, C., Nowzari, C.: On the effects of collision avoidance on emergent swarm behavior (2020, to appear)

    Google Scholar 

  17. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal \(n\)-body collision avoidance. In: Pradalier C., Siegwart R., Hirzinger G. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, vol. 70, pp. 3–19 (2011). Springer, Heidelberg. https://doi.org/10.1007/978-3-642-19457-3_1

  18. Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for collisions-free multirobot systems. IEEE Trans. Robot. 33(3), 661–674 (2017). https://doi.org/10.1109/TRO.2017.2659727

    Article  Google Scholar 

  19. Zhan, J., Li, X.: Flocking of multi-agent systems via model predictive control based on position-only measurements. IEEE Trans. Indust. Inf. 9(1), 377–385 (2013). https://doi.org/10.1109/TII.2012.2216536

    Article  Google Scholar 

  20. Zhang, H.T., Cheng, Z., Chen, G., Li, C.: Model predictive flocking control for second-order multi-agent systems with input constraints. IEEE Trans. Circ. Syst. I Regular Pap. 62(6), 1599–1606 (2015). https://doi.org/10.1109/TCSI.2015.2418871

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of the Navy, Office of Naval Research (ONR), under federal grants N00014-19-1-2121 and N00014-20-1-2042. The experiments were run on ARGO, a research computing cluster provided by the Office of Research Computing at George Mason University, VA. (http://orc.gmu.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taylor, C., Siebold, A., Nowzari, C. (2020). On the Effects of Minimally Invasive Collision Avoidance on an Emergent Behavior. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60376-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60375-5

  • Online ISBN: 978-3-030-60376-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics