Skip to main content

Control Parameter Importance and Sensitivity Analysis of the Multi-Guide Particle Swarm Optimization Algorithm

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12421))

Abstract

The multi-guide particle swarm optimization (MGPSO) algorithm is a multi-objective optimization algorithm that uses multiple swarms, each swarm focusing on an individual objective. This paper conducts an importance and sensitivity analysis on the MGPSO control parameters using functional analysis of variance (fANOVA). The fANOVA process quantifies the control parameter importance through analysing variance in the objective function values associated with a change in control parameter values. The results indicate that the inertia component value has the greatest sensitivity and is the most important control parameter to tune when optimizing the MGPSO.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beielstein, T., Parsopoulos, K.E., Vrahatis, M.N.: Tuning PSO parameters through sensitivity analysis. Universitätsbibliothek Dortmund (2002)

    Google Scholar 

  2. Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bonyadi, M.R., Michalewicz, Z.: Impacts of coefficients on movement patterns in the particle swarm optimization algorithm. IEEE Trans. Evol. Computat. 21(3), 378–390 (2016)

    Google Scholar 

  4. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)

    Google Scholar 

  5. Breiman, L.: Random forests. Machine Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell. 12(1), 1–22 (2017). https://doi.org/10.1007/s11721-017-0141-x

    Article  Google Scholar 

  7. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1157–1163. IEEE (2006)

    Google Scholar 

  8. Hoos, H., Leyton-Brown, K., Hutter, F.: An efficient approach for assessing hyperparameter importance. In: International Conference on Machine Learning, pp. 754–762 (2014)

    Google Scholar 

  9. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Computat. 10(5), 477–506 (2006)

    Article  Google Scholar 

  10. Jiang, M., Luo, Y., Yang, S.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102(1), 8–16 (2007)

    Article  MathSciNet  Google Scholar 

  11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  12. Raquel, C.R., Naval Jr, P.C.: An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 257–264 (2005)

    Google Scholar 

  13. Scheepers, C.: Multi-guided particle swarm optimization: A multi-objective particle swarm optimizer, unpublished thesis (2017)

    Google Scholar 

  14. Scheepers, C., Engelbrecht, A.P., Cleghorn, C.W.: Multi-guide particle swarm optimization for multi-objective optimization: empirical and stability analysis. Swarm Intell. 13(3), 245–276 (2019). https://doi.org/10.1007/s11721-019-00171-0

    Article  Google Scholar 

  15. Shi, Y., Eberhart, R.: The 1998 IEEE International Conference On Evolutionary Computation Proceedings (1998)

    Google Scholar 

  16. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Sun, Y., Yen, G.G., Yi, Z.: IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173–187 (2018)

    Article  Google Scholar 

  18. Tapia, M., Coello, C.: Applications of multi-objective evolutionary algorithms in economics and finance: a survey. In: IEEE Congress on Evolutionary Computation, pp. 532–539 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G. Carolus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carolus, T.G., Engelbrecht, A.P. (2020). Control Parameter Importance and Sensitivity Analysis of the Multi-Guide Particle Swarm Optimization Algorithm. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60376-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60375-5

  • Online ISBN: 978-3-030-60376-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics