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Abstract

Many NP‐complete graph problems are polynomial‐
time solvable on graph classes of bounded clique‐
width. Several of these problems are polynomial‐time

solvable on a hereditary graph class  if they are so

on the atoms (graphs with no clique cut‐set) of  .

Hence, we initiate a systematic study into bounded-

ness of clique‐width of atoms of hereditary graph

classes. A graph G is H ‐free if H is not an induced

subgraph of G, and it is H H( , )1 2 ‐free if it is both

H1‐free and H2‐free. A class of H ‐free graphs has

bounded clique‐width if and only if its atoms have

this property. This is no longer true for H H( , )1 2 ‐free
graphs, as evidenced by one known example. We

prove the existence of another such pair H H( , )1 2

and classify the boundedness of clique‐width on

H H( , )1 2 ‐free atoms for all but 18 cases.
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1 | INTRODUCTION

Many hard graph problems become tractable when restricting the input to some graph class. The
two central questions are “for which graph classes does a graph problem become tractable” and “for
which graph classes does it stay computationally hard?” Ideally, we wish to answer these questions
for a large set of problems simultaneously instead of considering individual problems one by one.

Graph width parameters [31, 45, 47, 51, 65] help make such results possible. A graph class
has bounded width if there is a constant c such that the width of all its members is at most c. As
we discuss below, there are several meta‐theorems that provide sufficient conditions for a
problem to be tractable on a graph class of bounded width.

Two popular width parameters are treewidth (tw) and clique‐width (cw). For every graph G
the inequality ≤ ⋅Gcw( ) 3 2 Gtw( )−1 holds [23]. Hence, every problem that is polynomial‐time
solvable on graphs of bounded clique‐width is also polynomial‐time solvable on graphs of bounded
treewidth. However, the converse statement does not hold: there exist graph problems, such as
LIST COLOURING, which are polynomial‐time solvable on graphs of bounded treewidth [50], but
NP‐complete on graphs of bounded clique‐width [27]. Thus, the trade‐off between treewidth and
clique‐width is that the former can be used to solve more problems, but the latter ismore powerful
in the sense that it can be used to solve problems for larger graph classes.

Courcelle [24] proved that every graph problem definable in monadic second‐order logic
(MSO2) is linear‐time solvable on graphs of bounded treewidth. Courcelle, Makowsky, and
Rotics [26] showed that every graph problem definable in the more restricted logic MSO1 is
polynomial‐time solvable even on graphs of bounded clique‐width (see [25] for details on
MSO1 and MSO2). Since then, several clique‐width meta‐theorems for graph problems not
definable in MSO1 have been developed [38, 42, 52, 61].

All of the above meta‐theorems require a constant‐width decomposition of the graph. We
can compute such a decomposition in polynomial time for treewidth [4] and clique‐width [60],
but for other width parameters, such as mim‐width, which is even more powerful than clique‐
width [65], it is not known whether this is possible and this problem may turn out to be harder.
For instance, unless NP ZPP= , there is no constant‐factor approximation algorithm for mim‐
width that runs in polynomial time [62]. Meta‐theorems for mim‐width [2, 18] currently
require an appropriate constant‐width decomposition as part of the input (which may still be
found in polynomial time for some graph classes).

Our focus. In our paper we concentrate on clique‐width1 in an attempt to find larger graph
classes for which certain NP‐complete graph problems become tractable without the
requirement of an appropriate decomposition as part of the input. The type of graph classes
we consider all have the natural property that they are closed under vertex deletion. Such graph
classes are said to be hereditary and there is a long‐standing study on the boundedness of clique‐
width for hereditary graph classes (see e.g. [3, 6, 8, 9, 12–15, 28, 30, 32, 33, 35, 36, 45, 51, 57]).

Besides capturing many well‐known classes, the framework of hereditary graph classes also
enables us to perform a systematic study of a width parameter or graph problem. This is because
every hereditary graph class  is readily seen to be uniquely characterised by a minimal (but
not necessarily finite) set  of forbidden induced subgraphs. If   = 1 or   = 2, then  is
said to be monogenic or bigenic, respectively. Monogenic and bigenic graph classes already have

1See Section 2 for a definition of clique‐width and other terminology used in Section 1.
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a rich structure, and studying their properties has led to deep insights into the complexity of
bounding graph parameters and solving graph problems. This is evidenced, for example, by
extensive studies on the classes of bull‐free graphs [20] or claw‐free graphs [21, 46], and surveys
for graph problems or parameters specifically restricted to bigenic graph classes [31, 43].

It is well known (see e.g. [36]) that a monogenic class of graphs has bounded clique‐width if
and only if it is a subclass of the class  with  P= { }4 . The survey [31] gives a state‐of‐the‐art
theorem on the boundedness and unboundedness of clique‐width of bigenic graph classes.
Unlike treewidth, for which a complete dichotomy is known [5], and mim‐width, for which
there is an infinite number of open cases [17], this state‐of‐the‐art theorem shows that there are
still five open cases (up to an equivalence relation); see also Section 4. From the same theorem
we observe that many graph classes are of unbounded clique‐width. However, if a graph class
has unbounded clique‐width, then this does not mean that a graph problem must be NP‐hard
on this class. For example, COLOURING is polynomial‐time solvable on the (bigenic) class
of C P( , )4 6 ‐free graphs [41], which contains the class of split graphs and thus has unbounded
clique‐width [57]. In this case it turns out that the atoms (graphs with no clique cut‐set) in the
class of C P( , )4 6 ‐free graphs do have bounded clique‐width. This immediately gives us an
algorithm for the whole class of C P( , )4 6 ‐free graphs due to Tarjan's decomposition theorem [64].

In fact, Tarjan's result holds not only for COLOURING, but also for many other graph
problems. For instance, several other classical graph problems, such as MINIMUM FILL‐IN,
MAXIMUM CLIQUE, MAXIMUM WEIGHTED INDEPENDENT SET [64] (see [1] for the unweighted variant)
and MAXIMUM INDUCED MATCHING [16] are polynomial‐time solvable on a hereditary graph class
 if and only if this is the case on the atoms of  . Hence, we aim to investigate, in a systematic
way, the following natural research question:

Which hereditary graph classes of unbounded clique‐width have the property that their atoms
have bounded clique‐width?

Known results. For monogenic graph classes, the restriction to atoms does not yield any
algorithmic advantages, as shown by Gaspers et al. [41].

Theorem 1 (Gaspers et al. [41]). Let H be a graph. The class of H ‐free atoms has bounded
clique‐width if and only if the class of H ‐free graphs has bounded clique‐width (so, if and
only if H is an induced subgraph of P4).

The result for C P( , )4 6 ‐free graphs [41] shows that the situation is different for bigenic
classes. We are aware of other hereditary graph classes  with this property, but in those cases
  > 2. Chordal graphs, or equivalently, C C( , , …)4 5 ‐free graphs have unbounded clique‐width
[57], but chordal atoms are complete graphs [37] and have clique‐width at most 2. The same
holds for any subclass of chordal graphs of unbounded clique‐width, such as the class of split
graphs [57], or equivalently, C C P( , , 2 )4 5 2 ‐free graphs. Moreover, Cameron et al. [19] proved that

C(cap, )4 ‐free odd‐signable atoms have clique‐width at most 48, whereas the class of all
C(cap, )4 ‐free odd‐signable graphs contains the class of split graphs and thus has unbounded

clique‐width. We refer to [39, 40] for some examples of polynomial‐time algorithms for
COLOURING on hereditary graph classes that exploit the fact that atoms of subclasses of these
graph classes have bounded clique‐width.

Our results. Due to Theorem 1, and motivated by the aforementioned algorithmic applications,
we focus on the atoms of bigenic graph classes. Recall that the class of C P( , )4 6 ‐free

DABROWSKI ET AL. | 3
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graphs has unbounded clique‐width but its atoms have bounded clique‐width [41]. This also
holds, for instance, for its subclass of C P( , 2 )4 2 ‐free graphs and thus for C P( , )4 5 ‐free graphs and
C P P( , + )4 2 3 ‐free graphs. We determine a new, incomparable case where we forbid P2 2 and
P P+2 3 (also known as the paraglider [49]); see Figure 1 for illustrations of these forbidden
induced subgraphs.

Theorem 2. The class of P P P(2 , + )2 2 3 ‐free atoms has bounded clique‐width (whereas
the class of P P P(2 , + )2 2 3 ‐free graphs has unbounded clique‐width).

We prove Theorem 2 in Section 3 after first giving an outline. Our approach shares some
similarities with the approach Malyshev and Lobanova [58] used to show that (WEIGHTED)
COLOURING is polynomial‐time solvable on P P P( , + )5 2 3 ‐free graphs. We explain the differences
between both approaches and the new ingredients of our proof in detail in Section 3. Here, we
only discuss a complication that makes proving the boundedness of clique‐width of atoms more
difficult in general. Namely, when working with atoms, we need to be careful with performing
complementation operations. In particular, a class of H H( , )1 2 ‐free graphs has bounded clique‐
width if only if the class of H H( , )1 2 ‐free graphs has bounded clique‐width. However, this
equivalence relation no longer holds for classes of H H( , )1 2 ‐free atoms. For example, C P( , )4 5 ‐free
(and even C P( , )4 6 ‐free) atoms have bounded clique‐width [41], but we will prove that C P( , )4 5 ‐
free atoms have unbounded clique‐width.

We also identify a number of new bigenic graph classes whose atoms already have
unbounded clique‐width. We prove this by giving two general techniques for constructing
atoms of unbounded clique‐width (see Lemmas 13 and 14) and by modifying existing graph
constructions for proving the unbounded clique‐width of the whole class; see Section 5.
Combining the constructions from Section 5 with Theorem 2 and the state‐of‐the‐art theorem
on clique‐width from [31] yields the following summary; see Section 2 for definitions of the
notation used.

Theorem 3. For graphs H1 and H2, let  be the class of H H( , )1 2 ‐free graphs.

1. The class of atoms in  has bounded clique‐width if
(i) H1 or ⊆H Pi2 4,
(ii) H = paw1 or Ks and H P P= +2 1 3 or tP1 for some ≥s t, 1,
(iii) ⊆H pawi1 and ⊆H K P K P P P P P P P S P+ 3 , + , + + , + , + , +i2 1,3 1 1,3 2 1 2 3 1 5 1 1,1,2 2

P P S, ,4 6 1,1,3 or S1,2,2,
(iv) ⊆H P P+i1 1 3 and ⊆H K P K P P P P P P P S+ 3 , + , + + , + , + ,i2 1,3 1 1,3 2 1 2 3 1 5 1 1,1,2

P P P S+ , ,2 4 6 1,1,3 or S1,2,2 ,
(v) ⊆H diamondi1 and ⊆H P P P P+ 2 , 3 +i2 1 2 1 2 or P P+2 3,

FIGURE 1 The two forbidden induced subgraphs from Theorem 2.

4 | DABROWSKI ET AL.
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(vi) ⊆H P P2 +i1 1 2 and ⊆H P P P P+ 2 , 3 +i2 1 2 1 2 or P P+2 3 ,
(vii) ⊆H gemi1 and ⊆H P P+i2 1 4 or P5,
(viii) ⊆H P P+i1 1 4 and ⊆H Pi2 5 ,
(ix) ⊆H K P+i1 3 1 and ⊆H Ki2 1,3,
(x) ⊆H P P2 +i1 1 3 and ⊆H P P2 +i2 1 3,
(xi) ⊆H Pi1 6 and ⊆H Ci2 4 or
(xii) ⊆H P2i1 2 and ⊆H P P+i2 2 3 .

2. The class of atoms in  has unbounded clique‐width if
(i) ∉H1 and ∉H2 ,
(ii) ∉H1 and ∉H2 ,
(iii) ⊇H K P+i1 3 1 and ⊇H P4i2 1 or P2 2,
(iv) ⊇H Ki1 1,3 and ⊇H Ki2 4 or C4,
(v) ⊇H diamondi1 and ⊇H K P P P, 5 , +i2 1,3 1 2 4 or P P+1 6,
(vi) ⊇H P P2 +i1 1 2 and ⊇H K P K P P+ , , +i2 3 1 5 2 4 or P6 ,
(vii) ⊇H Ki1 3 and ⊇H P P P P P P P2 + 2 , 2 + , 4 + , 3i2 1 2 1 4 1 2 2 or P2 3,
(viii) ⊇H P3i1 1 and ⊇H P P P P P P P2 + 2 , 2 + , 4 + , 3i2 1 2 1 4 1 2 2 or P2 3 ,
(ix) ⊇H Ki1 4 and ⊇H P P P P+ , 3 +i2 1 4 1 2 or P2 2,
(x) ⊇H P4i1 1 and ⊇H P Pgem, 3 +i2 1 2 or C4,
(xi) ⊇H P Pgem, + 2i1 1 2 or P P+2 3 and ⊇H P P+ 2i2 1 2 or P6,
(xii) ⊇H P P+i1 1 4 and ⊇H P P+ 2i2 1 2 or
(xiii) ⊇H P2i1 2 and ⊇H P P P+ , 3i2 2 4 2 or P5 .

We prove Theorem 3 in Section 6. Due to this theorem, we are left with 18 open cases, which
we list in Section 6 (see Open Problem 2). In Section 7 we discuss directions for future work.

2 | PRELIMINARIES

We first give some general graph terminology and notation, followed by some terminology
related to clique‐width.

2.1 | General graph terminology

Let G be a graph. For a subset ⊆S V G( ), the subgraph of G induced by S is the graph G S[ ],
which has vertex set S and edge set ∈ ∈uv uv E G u v S{ ( ), , }. If S s s= { , …, }r1 , we may write
G s s[ , …, ]r1 instead of G s s[{ , …, }]r1 . We write ⊆F Gi to indicate that F is an induced subgraph
of G. For a subset ⊆S V G( ), we let ⧹ ⧹G S G V G S= [ ( ) ]. A (connected) component of G is a
maximal connected subgraph of G. The neighbourhood of a vertex ∈u V G( ) is the set

∈ ∈N u v V G uv E G( ) = { ( ) ( )}. Two vertices in G are false twins if they have the same
neighbourhood; note that such vertices must be non‐adjacent.

An independent set in a graph G is a subset of V G( ) that consists of pairwise non‐adjacent
vertices; a clique inG is a subset of pairwise adjacent vertices. A clique ⊆K V G( ) is a clique cut‐
set ofG if ⧹G K is disconnected. A graph with no clique cut‐sets is an atom. Note that if a graph
is disconnected, then the empty set is a clique cut‐set, so atoms are connected by definition.

Let H be a graph. A graph G is H ‐free if G does not contain H as an induced subgraph. Let
H H{ , …, }p1 be a set of graphs. Then G is H H( , …, )p1 ‐free if it is Hi‐free for all ∈i p{1, …, }.

DABROWSKI ET AL. | 5
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Let X and Y be two disjoint vertex subsets of a graphG. The edges between X and Y form a
matching if every vertex in X is adjacent to at most one vertex in Y and vice versa. A vertex
∈ ⧹x V G Y( ) is (anti)‐complete to Y if it is (non)‐adjacent to every vertex in Y . Similarly, X is

complete to Y if every vertex of X is complete to Y and anti‐complete to Y if every vertex of X is
anti‐complete to Y . A vertex ∈u V G( ) is dominating if it is complete to ⧹V G u( ) { }. For ≥k 1, a
k‐subdivision of G is the operation of replacing each edge uv of G with a k( + 1)‐edge path,
whose end‐vertices are identified with u and v, respectively. The complement G ofG has vertex
setV G V G( ) = ( ) and edge set ∈ ≠ ∉E G uv u v V G u v uv E G( ) = { , ( ), , ( )}. The line graph of
G is the graph with vertex set E G( ) and an edge between two vertices e1 and e2 if and only if e1
and e2 share a common end‐vertex in G.

A graph is bipartite if its vertex set can be partitioned into two (possibly empty) independent
sets. A graph is complete multi‐partite if its vertex can be partitioned into r independent sets
V V, …, r1 for some integer ≥r 1 such that Vi is complete to Vj for every pair i j, with
≤ ≤i j r1 < ; if r = 2, we say that the graph is complete bipartite.
The graph G G+1 2 is the disjoint union of two vertex‐disjoint graphs G1 and G2 and has

vertex set ∪V G V G( ) ( )1 2 and edge set ∪E G E G( ) ( )1 2 . The graph rG is the disjoint union of r
copies of a graph G.

The graphs Ct, Kt and Pt denote the cycle, complete graph and path on t vertices,
respectively. The graph Ks t, denotes the complete bipartite graph whose two partition classes
contain s and t vertices, respectively. The paw is the graph P P+1 3 , the diamond is the graph
P P2 +1 2 , and the gem is the graph P P+1 4 . The claw is the graph with vertices x , y1, y2, y3 and
edges xyi for ∈i {1, 2, 3}. The subdivided claw Sh i j, , , for ≤ ≤ ≤h i j1 is the tree with one vertex
x of degree 3 and exactly three leaves, which are of distance h, i and j from x , respectively. We
let  denote the class of graphs every connected component of which is either a subdivided
claw or a path on at least one vertex. Note that S1,1,1 is isomorphic to the claw K1,3.

A graph is chordal if it has no induced cycles on more than four vertices, that is, if it is
C C( , , …)4 5 ‐free. A graph is co‐chordal if its complement is chordal. A graph is split if its vertex
set can be partitioned into a clique K and an independent set I . A graph is bipartite chain if it is
bipartite, say with bipartition classes X and Y , such that the vertices of X can be ordered
x x, …, p1 with the property that ⊆ ⊆ ⊆N x N x N x( ) ( ) … ( )p1 2 . The following observation is well
known and easy to see.

Lemma 4. A graph is bipartite chain if and only if it is bipartite and P2 2‐free.

2.2 | Clique‐width

The clique‐width of a graph G, denoted by Gcw( ), is the minimum number of labels needed to
construct G using the following four operations:

1. create a new graph consisting of a single vertex v with label i;
2. take the disjoint union of two labelled graphs G1 and G2;
3. add an edge between every vertex with label i and every vertex with label j ( ≠i j);
4. relabel every vertex with label i to have label j.

A class of graphs has bounded clique‐width if there is a constant c such that ≤G ccw( ) for
every ∈G ; otherwise the clique‐width of  is unbounded.

6 | DABROWSKI ET AL.
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For an induced subgraph G′ of a graph G, the subgraph complementation acting on G with
respect toG′ replaces every edge ofG′ by a non‐edge, and vice versa. Hence, the resulting graph
has vertex set V G( ) and edge set ⧹ ∪E G E G E G( ( ) ( ′)) ( ′). For two disjoint vertex subsets S and
T in G, the bipartite complementation acting on G with respect to S and T replaces every edge
with one end‐vertex in S and the other in T by a non‐edge and vice versa.

For a constant ≥k 0 and a graph operation γ , a graph class ′ is k γ( , )‐obtained from a
graph class  if

(i) every graph in ′ is obtained from a graph in  by performing γ at most k times, and
(ii) for every ∈G , there exists at least one graph in ′ obtained from G by performing γ at

most k times.

Then γ preserves boundedness of clique‐width if for every constant k and every graph class
 , every graph class ′ that is k γ( , )‐obtained from  has bounded clique‐width if and only if 
has bounded clique‐width.

Fact 1. Vertex deletion preserves boundedness of clique‐width [54].
Fact 2. Subgraph complementation preserves boundedness of clique‐width [51].
Fact 3. Bipartite complementation preserves boundedness of clique‐width [51].

We finish this section with making two further observations that we will need later on.
First, we make the following well‐known observation on bipartite chain graphs, which is
readily seen.

Lemma 5. Bipartite chain graphs have clique‐width at most 3.

Let ∪G K I E= ( , ) be a split graph with clique K and independent set I . If there is a vertex
∈v I with ⊊N v K( ) , then N v( ) is a clique cut‐set ofG. Furthermore, if  I > 1 then K is a clique

cut‐set. It follows that split atoms are complete graphs. It is readily seen that complete graphs
have clique‐width at most 2. Hence, we can make the following observation (which also follows
from a theorem of Dirac [37] and the fact that every split graph is chordal).

Lemma 6. Split atoms are complete graphs and have clique‐width at most 2.

3 | PROOF OF THEOREM 2

Here, we prove Theorem 2, namely, that the class of P P P(2 , + )2 2 3 ‐free atoms has bounded
clique‐width. Our approach is based on the following three claims:

(i) P P P(2 , + )2 2 3 ‐free atoms with an induced C5 have bounded clique‐width.
(ii) P P P(2 , + )2 2 3 ‐free atoms with an induced C4 have bounded clique‐width.
(iii) C C P P P( , , 2 , + )4 5 2 2 3 ‐free atoms have bounded clique‐width.

We prove Claims (i) and (ii) in Lemmas 7 and 8, respectively, whereas Claim (iii) follows from
the fact that C C P( , , 2 )4 5 2 ‐free graphs are split graphs and so, by Lemma 6, the atoms in this

DABROWSKI ET AL. | 7
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class are complete graphs and therefore have clique‐width at most 2. We partition the vertex set
of an arbitrary P P P(2 , + )2 2 3 ‐free atom G into a number of different subsets according to their
neighbourhoods in an induced C5 in Lemma 7 or an induced C4 in Lemma 8. We then analyse
the properties of these different subsets ofV G( ) and how they are connected to each other, and
use this knowledge to apply a number of appropriate vertex deletions, subgraph
complementations and bipartite complementations. These operations will modify G into a
graph G′ that is a disjoint union of a number of smaller “easy” graphs known to have “small”
clique‐width. We then use Facts 1–3 to conclude that G also has small clique‐width.

This approach works, as we will:

• apply the vertex deletions, subgraph complementations and bipartite complementations only
a constant number of times;

• not use the properties of being an atom or being P P P(2 , + )2 2 3 ‐free once we “leave the graph
class” due to applying the above graph operations.

Our approach is similar to the approach used by Malyshev and Lobanova [58] for showing
that COLOURING is polynomial‐time solvable on the superclass of P P P( , + )5 2 3 ‐free graphs.
However, we note the following two techniques that can be used in the design of algorithms
for COLOURING on hereditary graph classes, but cannot be used for proving boundedness of
clique‐width. Both these techniques were used in [58].

1 Prime atoms restriction: A set ⊆X V G( ) is a module if all vertices in X have the same set
of neighbours in ⧹V G X( ) . A module X in a graph G is trivial if it contains either all or at
most one vertex of G. A graph G is prime if it has no non‐trivial modules. To solve
COLOURING in polynomial time on some hereditary graph class  , one may restrict to prime
atoms in  [48]. Malyshev and Lobanova proved that P P P( , + )5 2 3 ‐free prime atoms with
an induced C5 are P3 1‐free or have a bounded number of vertices. In both cases, COLOURING

can be solved in polynomial time. We cannot make the pre‐assumption that our atoms are
prime. To see this, let G be a split graph that is not complete. Add two new non‐adjacent
vertices u and v to G and make them complete to the rest of V G( ). Let  be the
(hereditary) graph class that consists of all these “enhanced” split graphs and their
induced subgraphs. These enhanced split graphs are atoms, which have unbounded
clique‐width due to Fact 1 and the fact that split graphs have unbounded clique‐width
[57]. However, the prime atoms in  are P1 and P2,

2 which have clique‐width 1 and 2,
respectively.

2 Perfect graphs restriction: Malyshev and Lobanova observed that P P P C( , + , )5 2 3 5 ‐free graphs
are perfect. Hence, COLOURING can be solved in polynomial time on such graphs [44].
However, being perfect does not imply boundedness of clique‐width. For instance, split
graphs are perfect graphs with unbounded clique‐width [57].

Lemma 7. The class of P P P(2 , + )2 2 3 ‐free atoms that contain an inducedC5 has bounded
clique‐width.

2Let D be a prime atom in  . As D is prime, D cannot contain both u and v. This means that D is a split graph. By
Lemma 6, as D is an atom, it must be a complete graph. As D is prime, this implies that ≤ V D( ) 2.

8 | DABROWSKI ET AL.
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Proof. Suppose G is a P P P(2 , + )2 2 3 ‐free atom containing an induced cycle C on five
vertices, say v v, …,1 5 in that order. For ⊆S {1, …, 5}, let VS be the set of vertices
∈ ⧹x V G V C( ) ( ) such that ∩ ∈N x V C v i S( ) ( ) = { }i .
To simplify notation, in the following claims, subscripts on vertices and vertex sets

should be interpreted modulo 5 and whenever possible we will write Vi instead of Vi{ },
write Vi j, instead of Vi j{ , }, and so on.

Claim 7.1. For ∈i {1, …, 5}, ∪ ∪V V Vi i i i i i, +1 −1, , +1 are empty.

Proof of Claim. Suppose, for contradiction, that ∈ ∪ ∪x V V V2 2,3 1,2,3. ThenG x v v v[ , , , ]2 4 5

is a P2 2, a contradiction. The claim follows by symmetry. ⋄

By Claim 7.1, the only non‐empty sets VS are those of the form ∅V , Vi i, +2, Vi i i, +1, +3,
Vi i i i, +1, +2, +3 and V1,2,3,4,5. We now prove a sequence of claims.

Claim 7.2. For ∈i {1, …, 5}, ∪∅V Vi i, +2 is independent.

Proof of Claim. Suppose, for contradiction, that ∈ ∪∅x y V V, 1,3 are adjacent. Then
G v v x y[ , , , ]4 5 is a P2 2, a contradiction. The claim follows by symmetry. ⋄

Claim 7.3. For ∈i {1, …, 5}, ∪ ≤ V V 1i i i i i i i, +1, +3 , +1, +2, +3 .

Proof of Claim. Suppose, for contradiction that there are distinct vertices
∈ ∪x y V V, 1,2,4 1,2,3,4. Then G v v x v y[ , , , , ]1 4 5 or G x y v v v[ , , , , ]1 4 2 is a P P+2 3 if x is

adjacent or non‐adjacent to y, respectively, a contradiction. The claim follows by
symmetry. ⋄

Claim 7.4. For ∈i {1, …, 5}, there is at most one edge between Vi i, +2 and Vi i, −2.

Proof of Claim. Suppose, for contradiction, that a vertex ∈x V1,3 has two neighbours
∈y y V, ′ 1,4. By Claim 7.2, the sets V1,3 and V1,4 are independent. In particular, this means

that y is non‐adjacent to y′. Therefore G y y x v v[ , ′, , , ]4 1 is a P P+2 3 , a contradiction. It
follows that every vertex in V1,3 has at most one neighbour in V1,4. By symmetry, every
vertex inV1,4 has at most one neighbour inV1,3 and so the edges betweenV1,3 andV1,4 form
a matching. Since G is P2 2‐free, it follows that there is at most one edge between V1,3 and
V1,4. The claim follows by symmetry. ⋄

Claim 7.5. For ∈i {1, …, 5}, Vi i, +2 is complete to ∪V Vi i i i−1, +1 +1, +3.

Proof of Claim. Suppose, for contradiction, that ∈x V1,3 is non‐adjacent to ∈y V2,4.
Then G x v y v[ , , , ]1 4 is a P2 2, a contradiction. The claim follows by symmetry. ⋄

Claim 7.6. If ∈x V1,2,3,4,5, then x is complete to ⧹V G x( ) { }. In particular, this implies
that V1,2,3,4,5 is a clique.

Proof of Claim. Let ∈x V1,2,3,4,5 and suppose, for contradiction, that ∈ ⧹y V G x( ) { } is
non‐adjacent to x . Clearly ∉y V C( ). If ∈y V1,2,3,4,5, then G x y v v v[ , , , , ]1 4 2 is a P P+2 3 , a

DABROWSKI ET AL. | 9
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contradiction. If y is adjacent to vi and vi+2, but not to vi+1 for some ∈i {1, …, 5}, then
G v v v y x[ , , , , ]i i i+2 +1 is a P P+2 3 , a contradiction. By Claim 7.1, it follows that ∈ ∅y V . Note
that this implies that every vertex of V1,2,3,4,5 is adjacent to every other vertex in ⧹ ∅V G V( ) .

SinceG is an atom, N y( ) cannot be a clique, and so it must contain two non‐adjacent
vertices, say u and v. By Claim 7.2, ∉ ∅u v V, and for all ∈i {1, …, 5}, ∉u v V, i i, +2. Since
every vertex of V1,2,3,4,5 is adjacent to every other vertex in ⧹ ∅V G V( ) , neither u nor v is
equal to x and, furthermore, x is adjacent to both u and v. By Claim 7.1, it follows that u
and v must each have at least three neighbours in C. Therefore u and v must have a
common neighbour in C; let vi be such a common neighbour. Now G u v x y v[ , , , , ]i is a
P P+2 3 , a contradiction. This completes the proof of the claim. ⋄

We now show how to use a bounded number of vertex deletions, complementations and
bipartite complementations to change G into an edgeless graph. First, by Claim 7.3, we
can make Vi i i, +1, +3 and Vi i i i, +1, +2, +3 empty for all ∈i {1, …, 5} by deleting at most five
vertices. See Figure 2 for an illustration of the resulting graph. Next, by Claim 7.6 we can
apply a bipartite complementation between V1,2,3,4,5 and the rest of the graph to
disconnect G V[ ]1,2,3,4,5 from it. Next, by Claim 7.6 we can apply a complementation to
V1,2,3,4,5, which turns it into an independent set. Now, by Claim 7.1, the only other vertices
remaining are those in C, those in ∅V and those in Vi i, +2 for ∈i {1, …, 5}. Next, by Claim
7.4, we can make Vi i, +2 anti‐complete to Vi i, −2 for all ∈i {1, …, 5} by deleting at most five
vertices. By Claim 7.2, the only remaining edges are those between ∪V v{ }i i i−1, +1 and

∪V v{ }i i i, +2 +1 for ∈i {1, …, 5}. By Claim 7.5 combined with the definition of Vi i, +2, we can
apply a bipartite complementation between each of these pairs to remove all remaining
edges of the graph. Thus, applying at most ten vertex deletions, six bipartite
complementations and one complementation operation to G, we obtain an edgeless

FIGURE 2 The configuration of the sets in the proof of Lemma 7 obtained after deleting the vertex sets
Vi i i, +1, +3 and Vi i i i, +1, +2, +3 for ∈i {1, 2, 3, 4, 5}. Note that vertices in ∅V now have no neighbours outside V1,2,3,4,5.

10 | DABROWSKI ET AL.
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graph, which has clique‐width 1. By Facts 1, 2 and 3 it follows thatG has bounded clique‐
width. □

Lemma 8. The class of P P P(2 , + )2 2 3 ‐free atoms that contain an inducedC4 has bounded
clique‐width.

Proof. SupposeG is a P P P(2 , + )2 2 3 ‐free atom containing an induced cycleC on four vertices,
say v v, …,1 4 in that order. By Lemma 7, we may assume thatG is C5‐free. For ⊆S {1, …, 4},
let VS be the set of vertices ∈ ⧹x V G V C( ) ( ) such that ∩ ∈N x V C v i S( ) ( ) = { }i .

To simplify notation, in the following claims, subscripts on vertices and vertex sets
should be interpreted modulo 4 and whenever possible we will write Vi instead of Vi{ },
write Vi j, instead of Vi j{ , }, and so on.

Claim 8.1. For ∈i {1, …, 4}, Vi i i, +1, +2 is empty.

Proof of Claim. Suppose, for contradiction, that ∈x V1,2,3. Then G v v v v x[ , , , , ]1 3 2 4 is a
P P+2 3 , a contradiction. The claim follows by symmetry. ⋄

See Figure 3 for an illustration of the remaining sets VS that can be non‐empty.

Claim 8.2. For ∈i {1, …, 4}, ∪ ∪ ∪∅V V V Vi i i i+1 , +1 is an independent set.

Proof of Claim. Suppose, for contradiction, that ∈ ∪ ∪ ∪∅x y V V V V, 1 2 1,2 are adjacent.
Then G x y v v[ , , , ]3 4 is a P2 2, a contradiction. The claim follows by symmetry. ⋄

Claim 8.3. For ∈i {1, …, 4}, ∪V Vi i i i, +1 , +2 and ∪V Vi i i i, +1 +1, +3 are independent sets.

Proof of Claim. Suppose, for contradiction, that ∈ ∪x y V V, 1,2 1,3 are adjacent. By Claim
8.2, x and y cannot both be inV1,2, so assume without loss of generality that ∈x V1,3. Now
G x v v v y[ , , , , ]2 1 3 is a P P+2 3 (regardless of whether ∈y V1,2 or ∈y V1,3), a contradiction.
The claim follows by symmetry. ⋄

Claim 8.4. G V[ ]1,2,3,4 is P P( + )1 2 ‐free and so it has bounded clique‐width.

Proof of Claim. Suppose, for contradiction, that ∈x y y V, , ′ 1,2,3,4 induce a P P+1 2 in G.
Then G v v y x y[ , , , , ′]1 3 is a P P+2 3 , a contradiction. Therefore G V[ ]1,2,3,4 is P P( + )1 2 ‐free
and so P4‐free, so it has bounded clique‐width by Theorem 1. ⋄

Claim 8.5. For ∈i {1, 2}, Vi i, +2 is complete to V1,2,3,4.

Proof of Claim. Suppose, for contradiction, that ∈x V1,3 is non‐adjacent to ∈y V1,2,3,4.
Then G v v v x y[ , , , , ]1 3 2 is a P P+2 3 , a contradiction. The claim follows by symmetry. ⋄

Claim 8.6. For ∈i {1, 2, 3, 4} either ∪V Vi i i−1 −1, or ∪V Vi i i, +1 +1 is empty.

DABROWSKI ET AL. | 11
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Proof of Claim. Suppose, for contradiction, that ∈ ∪x V V1 1,2 and ∈ ∪y V V2,3 3. Then
G v x y v v[ , , , , ]1 3 4 is a C5 or G x v y v[ , , , ]1 3 is a P2 2 if x is adjacent or non‐adjacent to y,
respectively, a contradiction. The claim follows by symmetry. ⋄

Claim 8.7. If ∈ ∅x V , then x has at least two neighbours in one of V1,3 and V2,4 and is
anti‐complete to the other. Furthermore, in this case x is complete to V1,2,3,4.

Proof of Claim. Suppose ∈ ∅x V . SinceG is not an atom, N x( ) cannot be a clique, and so
must contain two non‐adjacent vertices y y, ′. By Claims 8.1 and 8.2, and the definition of

∅V , it follows that ∈ ∪ ∪y y V V V, ′ 1,3 2,4 1,2,3,4. If ∈y y V, ′ 1,2,3,4, then G y y v x v[ , ′, , , ]1 2 is a
P P+2 3 , a contradiction. By Claim 8.5, V1,2,3,4 is complete to ∪V V1,3 2,4, so it follows that

∈ ∪y y V V, ′ 1,3 2,4. If ∈y V1,3 and ∈y V′ 2,4, then G v v y x y[ , , ′, , ]1 2 is a C5, a contradiction.
It follows that ∈y y V, ′ 1,3 or ∈y y V, ′ 2,4.

Suppose ∈y y V, ′ 1,3. If ∈z V2,4 is a neighbour of x , then z must be adjacent to y and y′
(since, as shown above, x cannot have a pair of non‐adjacent neighbours one of which is
in V1,3 and the other of which is in V2,4), in which case G y y x v z[ , ′, , , ]1 is a P P+2 3 , a
contradiction. Therefore x cannot have a neighbour in V2,4. If ∈z V1,2,3,4 is a non‐
neighbour of x , then z must be adjacent to y and y′ by Claim 8.5, so G y y v x z[ , ′, , , ]1 is a
P P+2 3 , a contradiction. Therefore x is complete to V1,2,3,4. The claim follows by
symmetry. ⋄

Claim 8.8. For ∈i {1, 2}, ∪ ≤ V V 2i i i i, +1 +2, +3 .

Proof of Claim. Suppose, for contradiction, that ∪ ≥ V V 31,2 3,4 . First note that if
∈x V1,2, ∈y V3,4 are non‐adjacent, then G v x v y[ , , , ]1 3 is a P2 2, a contradiction. Therefore

V1,2 is complete to V3,4. By Claim 8.2, both V1,2 and V3,4 are independent sets. If ∈x V1,2
and ∈y y V, ′ 3,4, then G y y v x v[ , ′, , , ]3 4 is a P P+2 3 , a contradiction. By symmetry, we
conclude that either V1,2 or V3,4 is empty.

FIGURE 3 The possible non‐empty sets VS in the initial situation in the proof of Lemma 8. Edges between
the different sets VS are not drawn.

12 | DABROWSKI ET AL.
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Suppose V3,4 is empty, so V1,2 contains at least three vertices and let ∈x V1,2 be such a
vertex. Since G is an atom, N x( ) cannot be a clique, so x must have two neighbours y y, ′

that are non‐adjacent. By Claims 8.1, 8.2, 8.3 and 8.6, and the definition of V1,2, every
neighbour of ∈x V1,2 lies in ∪v v V{ , }1 2 1,2,3,4. Since v1 is complete to ∪v V{ }2 1,2,3,4 and v2 is
complete to ∪v V{ }1 1,2,3,4, it follows that ∈y y V, ′ 1,2,3,4. NowG y y v v x[ , ′, , , ]1 3 is a P P+2 3 ,
a contradiction. The claim follows by symmetry. ⋄

Claim 8.9. For ∈i {1, 2, 3, 4},Vi is complete toV1,2,3,4 and at most one vertex ofVi i, +2 has
neighbours in Vi .

Proof of Claim. Suppose ∈x V1. SinceG is an atom, x must have two neighbours y y, ′ that
are non‐adjacent. By Claims 8.1, 8.2 and 8.6, and the definition of V1, every neighbour of x
lies in ∪ ∪ ∪v V V V{ }1 1,3 2,4 1,2,3,4. If ∈ ∪y y V V, ′ 1,3 1,2,3,4, thenG y y v v x[ , ′, , , ]1 3 is a P P+2 3 ,
a contradiction. The vertex v1 is complete to ∪V V1,3 1,2,3,4. Therefore without loss of
generality, we may assume ∈y V2,4. Furthermore, note that V1,3 is an independent set by
Claim 8.3, so x has at most one neighbour inV1,3. SinceV1 is an independent set by Claim 8.2,
it follows that ∪G V V[ ]1 1,3 is a bipartite graph with parts V1 and V1,3. Since G is P2 2‐free, it
follows that no two vertices inV1 can have different neighbours inV1,3. Therefore at most one
vertex ofV1,3 has a neighbour inV1. Now if ∈z V1,2,3,4, then z is adjacent to y by Claim 8.5. If
x is non‐adjacent to z, then G v y v x z[ , , , , ]1 2 is a P P+2 3 , a contradiction. We conclude that
V1 is complete to V1,2,3,4. The claim follows by symmetry. ⋄

We now proceed as follows. By Claim 8.1, the set ∪ ∪ ∪V V V V1,2,3 2,3,4 1,3,4 1,2,4 is empty.
By Claims 8.6 and 8.8, there are at most two vertices in ∪ ∪ ∪V V V V1,2 2,3 3,4 1,4, so after
doing at most two vertex deletions, we may assume these sets are empty (note that the
resulting graph may no longer be an atom). Applying four further vertex deletions, we
can remove the cycle C from G. By Claim 8.9, at most one vertex of V1,3 (resp. V2,4) has a
neighbour in V1 (resp. V2). Therefore, applying at most two further vertex deletions, we
may assume that V1,3 is anti‐complete to V1 and V2,4 is anti‐complete to V2. By Claim 8.6,
we may assume without loss of generality that V3 and V4 are empty (see Figure 4 for an
illustration of the resulting graph).

The remaining vertices of G all lie in ∪ ∪ ∪ ∪ ∪∅V V V V V V1 2 1,3 2,4 1,2,3,4 and by Fact 1, it
suffices to show that this modified graph has bounded clique‐width. By Claims 8.5, 8.7 and 8.9,
V1,2,3,4 is complete to ∪ ∪ ∪ ∪∅V V V V V1 2 1,3 2,4, and so applying a bipartite complementation
between these two sets disconnects G V[ ]1,2,3,4 from the rest of the graph. By Claim 8.4,
G V[ ]1,2,3,4 has bounded clique‐width, so by Fact 3, we may assume V1,2,3,4 is empty.

By Claim 8.7, we can partition ∅V into the set ∅V
1,3 of vertices that have neighbours in

V1,3 and the set ∅V
2,4 of vertices that have neighbours inV2,4. Now Claims 8.2 and 8.3 imply

that ∪ ∪∅V V V2,4
1 1,3 and ∪ ∪∅V V V1,3

2 2,4 are independent sets (recall that V1,3 is now anti‐
complete to V1 and V2,4 is now anti‐complete toV2), and so ∪ ∪ ∪ ∪∅G V V V V V[ ]1 2 1,3 2,4 is
a P2 2‐free bipartite graph, so it is a bipartite chain graph by Lemma 4 and thus has
bounded clique‐width by Lemma 5. By Fact 1, this completes the proof. □

The class of split graphs is the class of C C P( , , 2 )4 5 2 ‐free graphs. Since split graphs therefore
form a subclass of the class of P P P(2 , + )2 2 3 ‐free graphs, and split graphs have unbounded
clique‐width [57], it follows that P P P(2 , + )2 2 3 ‐free graphs also have unbounded clique‐width.
Recall that by Lemma 6, split atoms are complete graphs and therefore have clique‐width at

DABROWSKI ET AL. | 13
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most 2. The P P P(2 , + )2 2 3 ‐free atoms that are not split must therefore contain an induced C4 or
C5. Applying Lemmas 7 and 8, we obtain Theorem 2, which we restate below.

Theorem 2 (restated). The class of P P P(2 , + )2 2 3 ‐free atoms has bounded clique‐width
(whereas the class of P P P(2 , + )2 2 3 ‐free graphs has unbounded clique‐width).

4 | CLIQUE ‐WIDTH SUMMARY FOR GENERAL BIGENIC
CLASSES

In this section we present the state‐of‐the‐art for boundedness of clique‐width of general bigenic
classes. We will use these results in Section 5, where we prove our results on unboundedness of
clique‐width of atoms in bigenic classes.

Let H H H H, , ,1 2 3 4 be four graphs. Then the classes of H H( , )1 2 ‐free graphs and H H( , )3 4 ‐free
graphs are said to be equivalent if the unordered pair H H,3 4 can be obtained from the unordered
pair H H,1 2 by some combination of the operations: (i) complementing both graphs in the pair, and
(ii) if one of the graphs in the pair is P3 1, replacing it with P P+1 3 or vice versa. If two classes are
equivalent, then one of them has bounded clique‐width if and only if the other one does [36].

Recall that the subdivided claw Sh i j, , , for ≤ ≤ ≤h i j1 is the tree with one vertex x of degree
3 and exactly three leaves, which are of distance h, i and j from x , respectively. Also recall that
 denotes the class of graphs every connected component of which is either a subdivided claw
or a path. Moreover, recall that the paw is the graph P P+1 3 , the diamond is the graph P P2 +1 2

and the gem is the graph P P+1 4 .

FIGURE 4 The configuration in the proof of Lemma 8 after deleting the at most six vertices in
∪ ∪ ∪V V V1,2 2,3 3,4 ∪V V C( )1,4 along with at most one vertex in each of V1,3 and V2,4. The sets ∪ ∪∅V V V2,4

1 1,3 and
∪ ∪∅V V V1,3

2 2,4 are independent.

14 | DABROWSKI ET AL.
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Theorem 9 (Dabrowski et al. [31]). Let  be a class of graphs defined by two forbidden
induced subgraphs. Then:

1.  has bounded clique‐width if it is equivalent to a class of H H( , )1 2 ‐free graphs such that
one of the following holds:
(i) H1 or ⊆H Pi2 4,
(ii) H K= s1 and H tP=2 1 for some ≥s t, 1,
(iii) ⊆H pawi1 and ⊆H K P K P P P P P P P S P+ 3 , + , + + , + , + , +i2 1,3 1 1,3 2 1 2 3 1 5 1 1,1,2 2

P P S, ,4 6 1,1,3 or S1,2,2,
(iv) ⊆H diamondi1 and ⊆H P P P P+ 2 , 3 +i2 1 2 1 2 or P P+2 3,
(v) ⊆H gemi1 and ⊆H P P+i2 1 4 or P5,
(vi) ⊆H K P+i1 3 1 and ⊆H Ki2 1,3 or
(vii) ⊆H P P2 +i1 1 3 and ⊆H P P2 +i2 1 3.

2.  has unbounded clique‐width if it is equivalent to a class of H H( , )1 2 ‐free graphs such
that one of the following holds:
(i) ∉H1 and ∉H2 ,
(ii) ∉H1 and ∉H2 ,
(iii) ⊇H K P+i1 3 1 or C4 and ⊇H P4i2 1 or P2 2,
(iv) ⊇H diamondi1 and ⊇H K P P P, 5 , +i2 1,3 1 2 4 or P6,
(v) ⊇H Ki1 3 and ⊇H P P P P P P P2 + 2 , 2 + , 4 + , 3i2 1 2 1 4 1 2 2 or P2 3,
(vi) ⊇H Ki1 4 and ⊇H P P+i2 1 4 or P P3 +1 2 or
(vii) ⊇H gemi1 and ⊇H P P+ 2i2 1 2.

As mentioned in Section 1, Theorem 9 does not cover five (non‐equivalent) cases (see also
Open Problem 2, where these open cases are marked with a *).

Open Problem 1. Does the class of H H( , )1 2 ‐free graphs have bounded or unbounded
clique‐width when:

(i) H K=1 3 and ∈H P S S{ + , }2 1 1,1,3 1,2,3 ,
(ii) H = diamond1 and ∈H P P P P P{ + + , + }2 1 2 3 1 5 ,
(iii) H = gem1 and H P P= +2 2 3.

5 | ATOMS OF UNBOUNDED CLIQUE ‐WIDTH

In this section we show our results for pairs H H( , )1 2 , for which the class of H H( , )1 2 ‐free atoms
has unbounded clique‐width. We start by giving a number of known and new lemmas, some of
which have wider applicability.

Lemma 10 (Dabrowski and Paulusma [36]). For ≥m 0 and n m> + 1 the clique‐width
of a graphG is at least







 + 1

n

m

− 1

+ 1
ifV G( ) has a partition into sets ∈V i j n( , {0, …, })i j, with

the following properties:

1. ≤ V 1i,0 for all ∈i n{1, …, },
2. ≤ V 1j0, for all ∈j n{1, …, },

DABROWSKI ET AL. | 15
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3. ≥ V 1i j, for all ∈i j n, {1, …, },
4. ∪G V[ ]j

n
i j=0 , is connected for all ∈i n{1, …, },

5. ∪G V[ ]i
n

i j=0 , is connected for all ∈j n{1, …, },
6. for ∈i j k n, , {1, …, }, if a vertex of Vk,0 is adjacent to a vertex of Vi j, then ≤i k,
7. for ∈i j k n, , {1, …, }, if a vertex of V k0, is adjacent to a vertex of Vi j, then ≤j k and
8. for ∈i j k n, , , ℓ {1, …, }, if a vertex of Vi j, is adjacent to a vertex of Vk,ℓ then ≤ k i m−

and ≤ j mℓ − .

The next lemma concerns walls. We do not formally define the wall, but instead we refer to
Figure 5, in which three examples of walls of different heights are depicted; see, for example,
[22] for a formal definition.

Lemma 11 (Lozin and Rautenbach [55]). For any constant ≥k 0, the class of
k‐subdivided walls has unbounded clique‐width.

Lemma 12. Let H H,1 2 be graphs. If ∉H H,1 2 or ∉H H,1 2 then the class of H H( , )1 2 ‐
free atoms has unbounded clique‐width.

Proof. Let    k V H V H= max( ( ) , ( ) )1 2 . Let H be a k‐subdivided wall of height at least 2
(see Figure 5). Note that the clique‐width of k‐subdivided walls is unbounded by
Lemma 11. By Fact 2, it follows that the clique‐width of graphs of the form H is also
unbounded.

We claim that if ∉H H,1 2 then H is H H( , )1 2 ‐free. Let ∈i {1, 2}. It is easy to verify
that if Hi contains a cycle, then H is Hi‐free (due to the choice of k). Similarly, if Hi

contains an induced tree with two vertices of degree at least 3 or a vertex of degree at
least 4, then H is Hi‐free. Therefore, if Hi is an induced subgraph of H , then Hi is a forest
and every component of Hi must be a tree in which at most one vertex has degree 3 and
all other vertices have degree at most 2. In other words, if Hi is an induced subgraph of H ,
then ∈Hi . We conclude that if ∉H H,1 2 , then H is H H( , )1 2 ‐free. This also implies
that if ∉H H,1 2 , then H is H H( , )1 2 ‐free.

It remains to show that H and H are atoms. Indeed, H is a bipartite graph, so every
clique cut‐set consists of at most two vertices; it is easy to verify that there is no vertex
whose removal disconnects H and no edge such that removing both of its end‐vertices
disconnects H . Therefore H is indeed an atom.

Now, H is a co‐bipartite graph, so it can be partitioned into two cliques A and B. Note
that    A B, > 12 by construction. Suppose, for contradiction, that X is a clique cut‐set in
H . Let ⧹Y V H X= ( ) and note that H Y[ ] is disconnected, so it contains two vertices a b,

that are non‐adjacent. Since A is a clique and B is a clique, we may assume ∈a A and
∈b B. Now Y cannot contain vertices ∈a A′ , ∈b B′ that are adjacent in H , as in that

FIGURE 5 Walls of height 2, 3 and 4, respectively.

16 | DABROWSKI ET AL.
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case a b{ ′, ′} would dominate H , contradicting the assumption that H Y[ ] is disconnected.
In H every vertex has either two or three neighbours, so in H every vertex has either two
or three non‐neighbours. Since ∈ ∩a A Y , there can be at most three vertices in ∩B Y

and similarly, there can be at most three vertices in ∩A Y . Since every vertex in ∩B Y

has at most three non‐neighbours in A, it follows that at most nine vertices of A

have non‐neighbours in ∩B Y . Since ≥ ∩   A A Y> 12 9 + , there must be a vertex
in ∈ ⧹ ∩a A Y A X′ = that has no non‐neighbours in ∩B Y and therefore has a
non‐neighbour ∈ ⧹ ∪b B Y B X′ = . This contradicts the fact that X is a clique in H .
Therefore H is indeed an atom. □

Lemma 13. Let  be a set of graphs such that no graph in  contains a pair of vertices
that are false twins. Then the class of ‐free atoms has bounded clique‐width if and only if
the class of ‐free graphs does.

Proof. Clearly, if the class of ‐free graphs has bounded clique‐width, then the class
of ‐free atoms does. Now suppose that the class of ‐free graphs has unbounded
clique‐width. Let  be the class of connected ‐free graphs on at least two vertices.
Since the clique‐width of a graph is equal to the maximum of the clique‐widths of its
components, it follows that  has unbounded clique‐width. For every graph ∈F ,
we construct the graph F′, which has vertex set ∈V F v v v V F( ′) = { , ′ ( )} and edge set

∈E F uv uv u v u v uv E F( ′) = { , ′, ′ , ′ ′ ( )}. So, for every ∈v V F( ) we have introduced a
new vertex v′ such that v and v′ are false twins in F′. Let ′ be the set of such graphs
F′. Since for every ∈F , the graph F′ contains F as an induced subgraph, it follows
that ′ has unbounded clique‐width.

We claim that every graph in ′ is an atom. Indeed, suppose, for contradiction, that X
is a clique cut‐set of a graph ∈F′ ′. Since for every ∈v V F( ), v is non‐adjacent to v′ in
F′, it follows that at most one of v and v′ is in X . Since v and v′ are false twins in F′ we
may replace all vertices ∈ ∩v X V F( ) by their false twins v′ and the resulting set X ′ will
still be a clique cut‐set. By construction, the graph F is connected and every vertex in

⧹V F X( ′) ′ has a neighbour in V F( ) in the graph ⧹F X′ ′. Therefore ⧹F X′ ′ is connected, a
contradiction. It follows that every graph in ′ is indeed an atom.

It remains to show that the graphs in ′ are ‐free. Indeed, suppose, for
contradiction, that ∈H is an induced subgraph of ∈F′ ′. Since for every
∈v V F( ), the vertices v and v′ are false twins in F′, and H does not have a pair of

false twins, it follows that at most one of v and v′ is in the induced copy of H found in F′.
Furthermore, if v′ is in this induced copy, then we can replace it by v. Thus we find that
there is an induced copy of H in F′ all of whose vertices lie in V F( ). Therefore H is an
induced subgraph of F . This is a contradiction as ∈F and the graphs in  are‐free.
We have therefore shown that the graphs in ′ are ‐free atoms and that ′ has
unbounded clique‐width. This completes the proof. □

Observe that the condition in the following lemma holds if and only if for every graph
∈H , the graph H does not have a component isomorphic to P1 or P2.

Lemma 14. Let  be a set of graphs such that no graph in  contains a dominating
vertex and no graph in  contains a pair of non‐adjacent vertices that are complete to the

DABROWSKI ET AL. | 17
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remainder of the graph. Then the class of ‐free atoms has bounded clique‐width if and
only if the class of ‐free graphs does.

Proof. Clearly, if the class of ‐free graphs has bounded clique‐width, then the class of
‐free atoms does. Now suppose that the class of ‐free graphs has unbounded clique‐
width. Let  be the class of ‐free graphs that contain at least one non‐edge. Since
complete graphs have clique‐width at most 2 and the class of ‐free graphs has
unbounded clique‐width, it follows that  has unbounded clique‐width. For every graph

∈F , we construct the graph F′ by adding two new vertices x x, ′ and adding edges to
make x x{ , ′} complete to the remainder of the graph (note that x is non‐adjacent to x′ in
F′). Let ′ be the set of such graphs F′. Since for every ∈F , the graph F′ contains F as
an induced subgraph, it follows that ′ has unbounded clique‐width.

We claim that every graph in ′ is an atom. Suppose, for contradiction, that ∈F′ ′

has a clique cut‐set X . Since x and x′ are non‐adjacent, it follows that either x or x′ are
not in X ; since x and x′ are false twins, we may assume ∉x X . Since F is not a complete
graph, there must be a vertex ∈ ⧹y V F X( ) . Since x is complete to ⧹V F X( ) in ⧹F X′ ,
every vertex of ⧹V F X( ) is in the same component of ⧹F X′ as x . Since y is complete to

⧹x x X{ , ′} in ⧹F X′ , every vertex of ⧹x x X{ , ′} is in the same component of ⧹F X′ as y.
Therefore ⧹F X′ is connected, a contradiction. It follows that every graph in ′ is indeed
an atom.

It remains to show that the graphs in ′ are ‐free. Indeed, suppose, for
contradiction, that ∈H is an induced subgraph of ∈F′ ′. Since H does not
contain a pair of non‐adjacent vertices that are complete to the rest of the graph, this
induced copy of H in F′ cannot contain both x and x′. Since H does not have a
dominating vertex, the induced copy of H in F′ cannot contain exactly one of x and x′.
Therefore the induced copy of H in F′must consist of only vertices inV F( ). Therefore H
is an induced subgraph of F . This is a contradiction as ∈F and the graphs in  are
‐free. We have therefore shown that the graphs in ′ are ‐free atoms and that ′ has
unbounded clique‐width. This completes the proof. □

Lemma 15. The class of C K K P P( , , , 2 + )4 1,3 4 1 2 ‐free atoms and the class of
P K P P P P(2 , + , 4 , 2 + )2 3 1 1 1 2 ‐free atoms have unbounded clique‐width (see Figure 6 for

illustrations of the forbidden induced subgraphs).

Proof. Brandstädt et al. [10, Theorem 10(ii)] constructed a family of graphs Hn that have
unbounded clique‐width and are C K K P P( , , , 2 + )4 1,3 4 1 2 ‐free. The graph Hn is constructed
from the 1‐subdivided n n× grid by adding new edges incident to the vertices added by
the subdivision as follows: in each cell of the subdivided grid, the left vertex added by the
subdivision is made adjacent to the top one, and the bottom vertex added by the
subdivision is made adjacent to the right one (see also Figure 7 or see [10, Section 6.2] for
a formal definition). However, the graph Hn has clique cut‐sets, so it is not an atom. On
the other hand, since the class of C K K P P( , , , 2 + )4 1,3 4 1 2 ‐free graphs has unbounded
clique‐width, Fact 2 implies that the class of P K P P P P(2 , + , 4 , 2 + )2 3 1 1 1 2 ‐free graphs has
unbounded clique‐width. We observe that every graph in P K P P P P{2 , + , 4 , 2 + }2 3 1 1 1 2 has
no dominating vertex and no two non‐adjacent vertices that are complete to the
remainder of the graph. Therefore, by Lemma 14, the class of P K P P P P(2 , + , 4 , 2 + )2 3 1 1 1 2 ‐
free atoms has unbounded clique‐width.

18 | DABROWSKI ET AL.
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We now prove that the class of C K K P P( , , , 2 + )4 1,3 4 1 2 ‐free atoms has unbounded clique‐
width. Consider a wall of height ≥k 2 and let Jk be its line graph. It is easy to verify that for
every k, the graph Hn contains Jk as an induced subgraph if n is sufficiently large. Similarly,
for every n, the graph Jk contains Hn as an induced subgraph if k is sufficiently large.
Therefore, by [10, Theorem 10(ii)], the graph Jk is C K K P P( , , , 2 + )4 1,3 4 1 2 ‐free and this
family of graphs has unbounded clique‐width (the former can also be seen by inspection
and latter can also be seen by using Lemma 10). Every clique in Jk contains at most three
vertices and it is easy to verify that Jk does not contain a clique cut‐set on at most three
vertices, so Jk is an atom. This completes the proof. □

Lemma 16. The class of P P P(2 + , 5 )1 2 1 ‐free atoms and the class of P P K(2 + , )1 2 5 ‐free
atoms has unbounded clique‐width (see Figure 8 for illustrations of the forbidden induced
subgraphs).

Proof. We use the construction from [29], which was used to show that P P P(2 + , 5 )1 2 1 ‐
free graphs have unbounded clique‐width. Consider a wall of height n2 + 1 for some
≥n 2. Colour the vertices on the top row with colours 1, 2, 3, 4, 1, 2, 3, 4, … and on the

next row with colours 3, 4, 1, 2, 3, 4, 1, 2, …, then alternate these colourings on the
following rows, so that no vertex has two neighbours that have the same colour (see also
Figure 9). Add edges to make each colour class into a clique and let Gn be the resulting
graph. Now Gn is P P P(2 + , 5 )1 2 1 ‐free and the family of such graphs had unbounded
clique‐width [29] (the former can also be seen by inspection and the latter follows from

FIGURE 6 The forbidden induced subgraphs for the classes of C K K P P( , , , 2 + )4 1,3 4 1 2 ‐free graphs and
P K P P P P(2 , + , 4 , 2 + )2 3 1 1 1 2 ‐free graphs mentioned in Lemma 15.

FIGURE 7 The graph Hn from the proof of Lemma 15 (n = 4 shown).
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combining Lemma 10 with Fact 2). By Fact 2, the family of graphs Gn also has
unbounded clique‐width.

It remains to show thatGn andGn are atoms. LetVi be the set of vertices with colour i.
Suppose, for contradiction, that Gn has a clique cut‐set X . If ⊆X Vi for some
∈i {1, 2, 3, 4}, then all vertices of ⧹G Vn i are in the same component of ⧹G Xn . Since

every vertex in Vi has at least one neighbour outside of Vi , it follows that every vertex of
⧹G Xn is in the same component of ⧹G Xn in this case, a contradiction. We may therefore

assume that X contains vertices in at least two sets Vi . By construction, each vertex in a
set Vi has at most one neighbour in each Vj for ∈ ⧹j i{1, 2, 3, 4} { }. Therefore X has at
most one vertex in each Vi . Therefore, there must be a vertex in ⧹V X1 that has a
neighbour in each of ⧹V X2 , ⧹V X3 and ⧹V X4 . Since each set Vi is a clique, it follows that
⧹G Xn is connected. This contradiction implies that Gn is indeed an atom. Now suppose,

for contradiction, that Gn has a clique cut‐set X . Since V V, …,1 4 are independent sets in
Gn , X contains at most one vertex of anyVi . Since inGn every vertex ofVi has at most one
non‐neighbour in each Vj for ∈ ⧹j i{1, 2, 3, 4} { }, it follows that ⧹G Xn must be connected.
This contradiction implies that Gn is indeed an atom. □

Lemma 17. The class of P P P P P P(2 + , + , + )1 2 2 4 1 6 ‐free and the class of
P P P P P P(2 + , + , + )1 2 2 4 1 6 ‐free atoms have unbounded clique‐width (see Figure 10 for

illustrations of the forbidden induced subgraphs).

Proof. We modify the construction of the graphGn, which was used in [30] to prove that
P P P P(2 + , + )1 2 2 4 ‐free graphs have unbounded clique‐width. Consider a wall of height
≥n 2. A wall is a bipartite graph; let A andC be the two sets in its bipartition. Consider a

FIGURE 8 The forbidden induced subgraphs for the classes of P P P(2 + , 5 )1 2 1 ‐free graphs and P P K(2 + , )1 2 5 ‐
free graphs mentioned in Lemma 16.

FIGURE 9 The graph Gn from the proof of Lemma 16 (n = 2 shown).
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1‐subdivision of the wall and let B be the set of vertices introduced by the subdivision.
Finally, we add edges to make A complete to C. LetGn be the resulting graph. ThenGn is
P P P P(2 + , + )1 2 2 4 ‐free and the family of such graphs Gn has unbounded clique‐width

[30] (the former also follows by inspection and the latter follows from combining
Lemma 11 with Fact 3). Let Hn be the graph obtained from Gn by adding a vertex x

complete to B, see Figure 11. Since Hn contains Gn as an induced subgraph, the family of
graphs Hn has unbounded clique‐width.

Now Gn is P P P P(2 + , + )1 2 2 4 ‐free, so if Hn contains an induced copy of P P2 +1 2 or
P P+2 4, then one of its vertices must be x . The neighbourhood of x in Hn is B, which is an
independent set. Every vertex of P P2 +1 2 has two neighbours that are adjacent to each
other, so Hn is P P2 +1 2 ‐free. Suppose, for contradiction, that Hn contains an induced
P P+2 4, say with vertex set Y . As observed above, ∈x Y . Now x has either one or two
neighbours in H Y[ ]n . If x has one neighbour in H Y[ ]n , then this neighbour must be in B,

FIGURE 10 The forbidden induced subgraphs for the classes of P P P P P P(2 + , + , + )1 2 2 4 1 6 ‐free graphs and
P P P P P P(2 + , + , + )1 2 2 4 1 6 ‐free graphs mentioned in Lemma 17.

FIGURE 11 The graph Hn from the proof of Lemma 17 (n = 3 shown). Vertices are denoted A, B or C if
they are in the corresponding set.
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and then there can be no other vertices in ∩B Y , so ∪ ∩ A C Y( ) = 4, but ∪H A C[ ]n is
a complete bipartite graph, so ∪ ∩H A C Y[( ) ]n is isomorphic to C K,4 1,3 or P4 1,
contradicting the fact that P P+2 4 is C K P( , , 4 )4 1,3 1 ‐free. Therefore x has two neighbours in
H Y[ ]n , so it is in the P4 component of H Y[ ]n . These two neighbours of x must be in B, so
the P4 component containing x must contain a vertex of A or C and the remaining P2
component of H Y[ ]n must lie in ∪A C. Since ∪H A C[ ]n is a complete bipartite graph, it
follows that there is an edge between the P2 component and the P4 component. This
contradiction implies that Hn is indeed P P( + )2 4 ‐free.

Suppose, for contradiction, that Hn contains an induced P P+1 6, say with vertex set
∪v Y{ } where v is the vertex in the P1 component and Y is the vertex set of the P6

component. If there are three vertices in ∩B Y and ∈x Y , then H Y[ ]n contains an
induced K1,3, a contradiction. Note that P6 has two vertices of degree 1 and four vertices of
degree 2, but every vertex in B has only two neighbours apart from x : one in each of
A and C. Therefore, if there are three vertices in ∩B Y , then one of these vertices b
must have neighbours ∈ ∩a A Y and ∈ ∩c C Y , in which case H a b c[ , , ]n is a K3, a
contradiction. We conclude that there are at most two vertices in ∩B Y . If ∉x Y then
there are at least four vertices in ∪ ∩A C Y( ) , contradicting the fact that P6 is
C K P( , , 4 )4 1,3 1 ‐free. Therefore, ∈x Y , and so ∈ ∪v A C (say A) because x is complete to
B. Since ∪x A{ } is independent and P6 is P4 1‐free, it follows that ∩ ≤ A Y 2, and so there
is at least one vertex ∈ ∩c C Y . But c is complete to A, so it is adjacent to v, a
contradiction. This contradiction implies that Hn is indeed P P( + )1 6 ‐free.

It remains to show that Hn and Hn are atoms. Suppose, for contradiction, that Hn

contains a clique cut‐set X . If ∈x X then X contains at most one additional vertex, which
must lie in B; it is easy to verify that ⧹H Xn is connected in this case. We may therefore
assume that ∉x X . Since A, B andC are independent sets, X contains at most one vertex in
each of these sets. Since ∉x X , and x is complete to B, all vertices of ⧹B X are in the same
component of ⧹H Xn . Since every vertex of B has a neighbour in A and C, there must be a
vertex in ⧹B X that has neighbours in both ⧹A X and ⧹C X . Since A is complete to C, it
follows that every vertex in ⧹V H X( )n is in the same component of ⧹H Xn . This
contradiction implies that Hn is indeed an atom. Now suppose, for contradiction, that Hn

contains a clique cut‐set X . Since A is anti‐complete to C in Hn , X cannot contain vertices
in both A and C; by symmetry we may assume that X does not contain any vertices of C.
Now C is a clique and, since every vertex of B has a neighbour in C, every vertex in
∪ ⧹B C X( ) is in the same component of ⧹H Xn . If ∉x X , then every vertex in ⧹A X is

adjacent to x , which is complete to C, so every vertex in ⧹V H X( )n is in the same
component of ⧹H Xn , a contradiction. We may therefore assume that ∈x X . Then no vertex
of B is in X , so ⊆ ∪X A x{ }. Since every vertex of A has a neighbour in B, it follows that
every vertex of A has a neighbour in ⧹B X B= . Therefore every vertex of ⧹V H X( )n is in the
same component of ⧹H Xn . This contradiction implies that Hn is indeed an atom. □

Lemma 18. The class of P P P P P P P(2 + 2 , 2 + , 4 + , 3 )1 2 1 4 1 2 2 ‐free bipartite atoms and the
class of P P P P P P P(2 + 2 , 2 + , 4 + , 3 )1 2 1 4 1 2 2 ‐free co‐bipartite atoms have unbounded clique‐
width (see Figure 12 for illustrations of the forbidden induced subgraphs).

Proof. Let Hn be a 1‐subdivided wall of height ≥n 2 and note that the class of such
graphs has unbounded clique‐width by Lemma 11. Note that Hn is connected and
bipartite, say with parts V1 and V2. Let Gn be the graph obtained from Hn by applying a
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bipartite complementation betweenV1 andV2. By Fact 3, the family of such graphsGn also
has unbounded clique‐width and by Fact 2 the family of graphs Gn also has unbounded
clique‐width (see also Figure 13). Now Gn is a P P P P P P P(2 + 2 , 2 + , 4 + , 3 )1 2 1 4 1 2 2 ‐free
bipartite graph (by inspection, or see e.g. [35, 56]).

It remains to show that Gn and Gn are atoms. Suppose, for contradiction, that X is a
clique cut‐set of Gn. Since V1 and V2 are independent, X contains at most one vertex from
each of these sets. Since every vertex ofV1 has at most three non‐neighbours inV2 and vice
versa, it follows that ⧹G Xn is connected. This contradiction shows that Gn is indeed an
atom. Now suppose, for contradiction, that X is a clique cut‐set of Gn . If X is a subset of
either V1 or V2, say V1, then every vertex of V2 lies outside X . Since every vertex of V1 has a
neighbour in V2, it follows that ⧹G Xn is connected in this case. Therefore X must contain
at least one vertex of V1 and at least one vertex of V2. In Gn , every vertex in V1 has at most
three neighbours in V2 and vice versa, so X contains at most three vertices from V1 and at
most three vertices from V2. In Gn , every vertex in V1 has at most three neighbours in V2,
and every vertex in V2 has at least one neighbour in V1, and  V > 12 = 9 + 32 . Hence,
there must be a vertex in ⧹V X2 with a neighbour in ⧹V X1 . Since V1 and V2 are cliques, it
follows that ⧹G Xn is connected. This completes the proof. □

Lemma 19. The class of P2 3‐free bipartite atoms and the class of P2 3 ‐free co‐bipartite
atoms have unbounded clique‐width (see Figure 14 for illustrations of the forbidden induced
subgraphs).

Proof. We adapt the construction of the graph Gn, which was used by Lozin and
Volz [56] to show that the class of P2 3‐free bipartite graphs has unbounded clique‐width.
For ≥n 3, construct the graph Gn as follows. Let the vertex set of Gn be

∈ ∈ ∪ ∈ ∈ v i n j n w i n j n{ {0, …, }, {1, …, }} { {1, …, }, {0, …, }}i j i j, , . For ∈i j k n, , {1, …, },
add an edge between vi j, and wk,0 if ≥k i and add an edge between wi j, and v k0, if ≥k j.
For each ∈i j n, {1, …, }, add an edge between vi j, and wi j, and an edge between v j0, and
wi,0. Let Gn be the resulting graph. Then Gn is a P2 3‐free bipartite graph and the family of
such graphs has unbounded clique‐width [56] (the former can also be seen by inspection

FIGURE 12 The forbidden induced subgraphs for the classes of P P P P P P P(2 + 2 , 2 + , 4 + , 3 )1 2 1 4 1 2 2 ‐free
bipartite graphs and P P P P P P P(2 + 2 , 2 + , 4 + , 3 )1 2 1 4 1 2 2 ‐free co‐bipartite graphs mentioned in Lemma 18.

DABROWSKI ET AL. | 23

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23000 by T

est, W
iley O

nline L
ibrary on [11/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and the latter follows from Lemma 10). Therefore the class of P2 3‐free bipartite graphs
has unbounded clique‐width, and so Fact 2 implies that the class of P2 3 ‐free co‐bipartite
graphs has unbounded clique‐width.

We observe that every graph in P C C C{2 , , , , …}3 3 5 7 has no dominating vertex and no
two non‐adjacent vertices that are complete to the remainder of the graph. Therefore, by
Lemma 14, it follows that the class of P2 3 ‐free co‐bipartite atoms has unbounded clique‐
width. Now let Hn be the graph obtained fromGn by deleting vn n, and wn n, (see Figure 15)
and note that Hn is a P2 3‐free bipartite graph. By Fact 1, the family of graphs Hn has
unbounded clique‐width.

We now prove that the class of P2 3‐free bipartite atoms has unbounded clique‐width.
Let V be the set of vertices in the P2 3‐free bipartite graph Hn of the form vi j, and letW be
the set of vertices in Hn of the form wi j, and note that V and W are independent sets.
Suppose, for contradiction, that Hn has a clique cut‐set X . Since Hn is bipartite, every
clique cut‐set in Hn contains at most one vertex from each part, so ≤ X 2. If X does not
contain v n0, , then every vertex in ⧹W X is in the same component of ⧹H Xn . Since every
vertex in V has at least two neighbours in W , and at most one vertex of W is in X , it
follows that every vertex of ⧹V X is in the same component of ⧹H Xn , and so ⧹H Xn is
connected. This contradiction implies that ∈v Xn0, . By symmetry, ∈w Xn,0 . By
construction, deleting v n0, and wn,0 does not disconnect Hn, so Hn is indeed an atom.
This completes the proof. □

Lemma 20. The class of K P P( , + )4 1 4 ‐free atoms and the class of P P P(4 , + )1 1 4 ‐free
atoms have unbounded clique‐width (see Figure 16 for illustrations of the forbidden induced
subgraphs).

FIGURE 13 The graph Gn from the proof of Lemma 18 (n = 3 shown).

FIGURE 14 The forbidden induced subgraphs for the classes of P2 3‐free bipartite graphs and P2 3 ‐free co‐
bipartite graphs mentioned in Lemma 19.
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Proof. For this proof we use a construction that is implicit in the proof in [53,
Theorem 3] that GRAPH ISOMORPHISM is GI‐complete on the class of K P P( , + )4 1 4 ‐free
graphs; we give an explicit construction. Consider a 1‐subdivided wall of height ≥n 2.
This graph is bipartite; let P andQ be the two parts of its bipartition with the vertices inQ
being the vertices added by the subdivision. Consider a 3‐subdivision of this 1‐subdivided
wall (so the resulting graph is a 7‐subdivided wall). Partition the vertices introduced by
this 3‐subdivision as follows: let A be the set of vertices that are adjacent to vertices of P,
let C be the set of vertices that are adjacent to vertices of Q, and let B be the set of
remaining vertices introduced by the 3‐subdivision (which have a neighbour in both A

and C. Apply complementations to ∪P C, ∪Q A, and B (these sets will become cliques).
Let Hn be the resulting graph (see also Figure 17) and note that Hn is K P P( , + )4 1 4 ‐free
and that the family of such graphs has unbounded clique‐width [63] (the former
statement can be seen by inspection and the latter can be seen by combining Lemma 11
and Fact 2). Therefore the class of K P P( , + )4 1 4 ‐free graphs has unbounded clique‐width.

FIGURE 15 The graph Hn from the proof of Lemma 19. For clarity, the edges incident to vi j, and wi j, when
∈i j n, {1, …, } are depicted for only one such pair of vertices. [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 16 The forbidden induced subgraphs for the classes of K P P( , + )4 1 4 ‐free graphs and P P P(4 , + )1 1 4 ‐
free graphs mentioned in Lemma 20.
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We observe that neither K4 nor P P+1 4 contains a pair of false twins. Therefore, by
Lemma 13, the class of K P P( , + )4 1 4 ‐free atoms has unbounded clique‐width.

We now prove that the class of P P P(4 , + )1 1 4 ‐free atoms has unbounded clique‐width.
As Hn is K P P( , + )4 1 4 ‐free, it follows that Hn is P P P(4 , + )1 1 4 ‐free. By Fact 2, it follows
that the family of graphs Hn also has unbounded clique‐width. It remains to show that Hn

is an atom. Suppose, for contradiction, that Hn has a clique cut‐set X . Recall that ∪P C,
∪Q A, and B are cliques. As A and C are anti‐complete to each other, it follows that X

contains vertices from at most one of A or C. Similarly, since P, Q and B are pairwise
anti‐complete, it follows that X contains vertices from at most one of P,Q or B. Note that
every vertex from ∪ ∪P Q B has a neighbour in A and in C. Since A and C are cliques
and X contains vertices in at most one of these sets, it follows that the vertices in
∪ ∪ ⧹P Q B X( ) all lie in the same component of ⧹H Xn . Similarly, every vertex of ∪A C

has a neighbour in both P andQ. Since X contains vertices from at most one of P orQ, it
follows that the vertices in ∪ ⧹A C X( ) are in the same component of ⧹H Xn as the
vertices of ∪ ∪ ⧹P Q B X( ) . Therefore ⧹H Xn is connected. This contradiction implies that
Hn is indeed an atom. This completes the proof. □

Lemma 21. The class of P P P(4 , 3 + )1 1 2 ‐free atoms and the class of P P P(4 , 3 + )1 1 2 ‐free
atoms have unbounded clique‐width (see Figure 18 for illustrations of the forbidden induced
subgraphs).

Proof. We use the construction of [29] for proving that the class of P P P(4 , 3 + )1 1 2 ‐free
graphs has unbounded clique‐width. Let ≥n 7 and consider an n n× grid Hn and for
∈i j n, {0, …, − 1}, let vi j, be the vertex of Hn with x‐coordinate i and y‐coordinate j. For
∈k {0, 1, 2}, let ≡V v i j k= { + mod 3}k i j, (see also Figure 19 for a depiction of this

3‐colouring). Apply a complementation to each Vk. Let Gn be the resulting graph. The
resulting graph Gn is P P P(4 , 3 + )1 1 2 ‐free and the family of graphs Gn has unbounded
clique‐width [29] (the first of these statements can also be seen by inspection and the

FIGURE 17 The graph Hn from the proof of Lemma 20 (n = 2 shown).
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latter follows from combining Lemma 10 and Fact 2). By Fact 2, it follows that the family
of graphs Gn also has unbounded clique‐width.

It remains to show thatGn andGn are atoms. Suppose, for contradiction, thatGn has a
clique cut‐set X . If ⊆X Vi for some ∈i {0, 1, 2}, then all vertices of ⧹G Vn i are in the same
component of ⧹G Xn . Since every vertex in Vi has at least one neighbour outside of Vi , it
follows that every vertex of ⧹G Xn is in the same component of ⧹G Xn in this case, a
contradiction. We may therefore assume that X contains vertices in at least two sets Vi .
By construction, each vertex in a set Vi has at most two neighbours in each Vj for
∈ ⧹j i{0, 1, 2} { }. Therefore X has at most two vertices in eachVi . Since ≥n 7, there must

be at least 15 vertices in V0 that have neighbours in both V1 and V2 (see also Figure 19).
Since very vertex in ∪V V1 2 has at most two neighbours in V0, there must be a vertex in
⧹V X0 that has a neighbour in both ⧹V X1 and ⧹V X2 . Since each setVi is a clique, it follows

that ⧹G Xn is connected. This contradiction implies that Gn is indeed an atom. Now
suppose, for contradiction, that Gn has a clique cut‐set X . Since V0, V1 and V2 are
independent sets in Gn , X contains at most one vertex of any Vi . Since every vertex of Vi
has at most two non‐neighbours in eachVj for ∈ ⧹j i{0, 1, 2} { }, it follows that ⧹G Xn must
be connected. This contradiction implies that Gn is indeed an atom. □

Lemma 22. The class of K4‐free co‐chordal atoms and the class of C P( , 4 )4 1 ‐free atoms
have unbounded clique‐width (see Figure 20 for illustrations of the forbidden induced
subgraphs).

FIGURE 18 The forbidden induced subgraphs for the classes of P P P(4 , 3 + )1 1 2 ‐free graphs and
P P P(4 , 3 + )1 1 2 ‐free graphs mentioned in Lemma 21.

FIGURE 19 The graph Gn from the proof of Lemma 21 (n = 7 shown).
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Proof. In [10, Theorem 11], Brandstädt et al. constructed a family of graphs Gn that are
K4‐free co‐chordal and have unbounded clique‐width. The construction ofGn for ≥n 3 is
as follows. Let the vertex set of Gn be ∈ ≠v i j n i j{ , {0, …, }, ( , ) (0, 0)}i j, . For

∈i j k n, , {1, …, }, add an edge between vi j, and vk,0 if ≥k i and add an edge between
vi j, and v k0, if ≥k j. For each ∈i j n, {1, …, }, add an edge between vi,0 and v j0, . As shown in
the proof of [10, Theorem 11], Gn is a K4‐free co‐chordal graph and the family of such
graphs has unbounded clique‐width (the former property can also be seen by inspection
and the latter follows from Lemma 10). Therefore the class of K4‐free co‐chordal graphs
had unbounded clique‐width. We observe that neither K4 nor Cr for any ≥r 4 contains a
pair of false twins. Therefore, by Lemma 13, the class of K4‐free co‐chordal atoms has
unbounded clique‐width.

We now prove that the class of C P( , 4 )4 1 ‐free atoms has unbounded clique‐width. Observe
that the family of graphs of the form Gn is P4 1‐free and chordal, and by Fact 2, it has
unbounded clique‐width. NowGn is not an atom, since the set of vertices ∈v i j n{ , {1, …, }}i j,

is a clique cut‐set in Gn . We construct a graph Jn from Gn+1 as follows (see also Figure 21).
Delete the vertices in the set ∈v v i n{ , {1, …, + 1}i i1, ,1 and add the edge v vn n0, +1 +1,0. Let Jn be
the resulting graph. Now Jn containsGn−1 as an induced subgraph, so the family of graphs of
the form Jn has unbounded clique‐width. We claim that Jn is C P( , 4 )4 1 ‐free. Note that
⧹J v{ }n n0, +1 and ⧹J v{ }n n+1,0 are induced subgraphs of Gn+1 , which is C P( , 4 )4 1 ‐free. Therefore

we only need to verify that there is no induced P4 1 or C4 in Jn that contains both v n0, +1

and vn+1,0. Since v n0, +1 is adjacent to vn+1,0, there cannot be an induced P4 1 in Jn
that contains both these vertices. Now ∪N v v v v( ) = { } { , …, }n n n0, +1 +1,0 0,1 0, and

∪N v v v v( ) = { } { , …, }n n n+1,0 0, +1 1,0 ,0 . Since no vertex in v v{ , …, }n0,1 0, has a neighbour in
v v{ , …, }n1,0 ,0 in Jn, it follows that Jn is indeed C4‐free.

It remains to show that Jn is an atom. Suppose, for contradiction, that X is a clique cut‐set
of Jn. First, suppose that v n0, +1 is in X . Then ∉v X1,0 and ∉v Xn n+1, +1 as v n0, +1 is non‐
adjacent to these vertices. As v1,0 and vn n+1, +1 are adjacent and every vertex in ⧹J v{ }n n0, +1 is
adjacent to at least one of these vertices, we find that X is not a clique cut‐set. We may
therefore assume that ∉v Xn0, +1 and by symmetry, that ∉v Xn+1,0 . We partition the vertices
vi j, in Jn into three sets A, B andC, if j = 0, i = 0 or ≠i j, 0, respectively, and note that each
of these sets is a clique. Since A and B are cliques and the vertices v n0, +1 and vn+1,0 are
adjacent, it follows that all vertices in ∪ ⧹A B X( ) are in the same component of ⧹J Xn . Note
that every vertex from C has at least one neighbour in both A and B. However, X cannot
contain vertices from both A and B since ⧹A v{ }n0, +1 and ⧹B v{ }n+1,0 are anti‐complete.
Therefore ⧹J Xn is connected. This contradiction implies that Jn is an atom. □

FIGURE 20 The forbidden induced subgraphs for the classes of K4‐free co‐chordal graphs and C P( , 4 )4 1 ‐free
graphs mentioned in Lemma 22.
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Lemma 23. The class of P P P P( + , + 2 )1 4 1 2 ‐free atoms and the class of P P P P( + , + 2 )1 4 1 2 ‐
free atoms have unbounded clique‐width (see Figure 22 for illustrations of the forbidden induced
subgraphs).

Proof. We use the construction from [7], which was used to show that P P P P( + , + 2 )1 4 1 2 ‐
free graphs have unbounded clique‐width. We copy this construction below. Let ≥t 2 and
letG be the t t× square grid. Let v v, …,G

n
G

1 be the vertices ofG and let e e, …,G
m
G

1 be the edges
of G. We construct a graph q G( ) from G as follows (see also Figure 23):

1. Create a complete multi‐partite graph with a partition A A( , …, )G
n
G

1 , where  A d v= ( )i
G

G i
G

for ∈i n{1, …, } and let A A=G
i
G.

2. Create a complete multi‐partite graph with partition B B( , …, )G
m
G

1 , where  B = 2i
G for

∈i m{1, …, } and let B B=G
i
G.

3. Take the disjoint union of the two graphs above, then for each edge e v v=i
G

i
G

i
G

1 2
inG in

turn, add an edge from one vertex of Bi
G to a vertex of Ai

G
1
and an edge from the other

vertex of Bi
G to a vertex of Ai

G
2
. Do this in such a way that the edges added between AG

and BG form a perfect matching.

In [7] it was shown that the graph q G( ) is P P P P( + , + 2 )1 4 1 2 ‐free and that the clique‐
width of such graphs is unbounded. Therefore the class of P P P P( + , + 2 )1 4 1 2 ‐free graphs
has unbounded clique‐width. We observe that neither P P+1 4 nor P P+ 21 2 contains a
pair of false twins. Therefore, by Lemma 13, it follows that the class of P P P P( + , + 2 )1 4 1 2 ‐
free atoms has unbounded clique‐width.

We now prove that the class of P P P P( + , + 2 )1 4 1 2 ‐free atoms has unbounded clique‐
width. By Fact 2, the class of P P P P( + , + 2 )1 4 1 2 ‐free graphs of the form q G( ) also has

FIGURE 21 The graph Jn from the proof of Lemma 22. The sets A, B and C are cliques. For clarity,
the edges between ∪A B and C are depicted for only one vertex in C . [Color figure can be viewed at
wileyonlinelibrary.com]
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unbounded clique‐width. It therefore suffices to show that q G( ) is an atom. Suppose, for
contradiction, that X is a clique cut‐set in q G( ). In q G( ), AG induces a disjoint union of
cliques of the form Ai

G, and BG induces a disjoint union of cliques of the form Bi
G.

Therefore ∈ ∪X A Bi
G

j
G for some i j, . Let ≠k i and ≠ jℓ . Then in q G( ) every vertex in BG

has a neighbour in Ak
G and every vertex in AG has a neighbour in BGℓ . Since Ak

G and BGℓ are
cliques, it follows that ⧹q G X( ) is connected, a contradiction. Therefore q G( ) is indeed an
atom. □

Lemma 24. The class of P P P(2 + , )1 2 6 ‐free atoms has unbounded clique‐width (see
Figure 24 for illustrations of the forbidden induced subgraphs).

FIGURE 22 The forbidden induced subgraphs for the classes of P P P P( + , + 2 )1 4 1 2 ‐free graphs and
P P P P( + , + 2 )1 4 1 2 ‐free graphs mentioned in Lemma 23.

FIGURE 23 The graph q G[ ] in Lemma 23. Edges between partition classes Ai
G and edges between partition

classes Bi
G are not shown. [Color figure can be viewed at wileyonlinelibrary.com]
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Proof. By Theorem 9.2(iv), the class of P P P(2 + , )1 2 6 ‐free graphs has unbounded
clique‐width. We observe that neither P P2 +1 2 nor P6 has a dominating vertex or a pair of
non‐adjacent vertices that are complete to the remainder of the graph. Therefore, by
Lemma 14, it follows that the class of P P P(2 + , )1 2 6 ‐free atoms has unbounded
clique‐width. □

Lemma 25. The class of P P P( + , )1 4 6 ‐free atoms has unbounded clique‐width (see
Figure 25 for illustrations of the forbidden induced subgraphs).

Proof. By Theorem 9.2(iv), the class of P P P( + , )1 4 6 ‐free graphs has unbounded clique‐
width. We observe that neither P P+1 4 nor P6 contains a pair of false twins. Therefore, by
Lemma 13, it follows that the class of P P P( + , )1 4 6 ‐free atoms has unbounded
clique‐width. □

Lemma 26. The class of P P P P P P P( + , + 2 , + 2 , )2 3 1 2 1 2 6 ‐free atoms has unbounded
clique‐width (see Figure 26 for illustrations of the forbidden induced subgraphs).

FIGURE 24 The forbidden induced subgraphs for the class of P P P(2 + , )1 2 6 ‐free graphs mentioned in
Lemma 24.

FIGURE 25 The forbidden induced subgraphs for the class of P P P( + , )1 4 6 ‐free graphs mentioned in
Lemma 25.

FIGURE 26 The forbidden induced subgraphs for the class of P P P P P P P( + , + 2 , + 2 , )2 3 1 2 1 2 6 ‐free graphs
mentioned in Lemma 26.
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Proof. Consider a 1‐subdivision of a wall of height ≥n 2. Let A be the set of original
vertices of the wall and let B be the set of vertices introduced by the subdivision. Apply a
complementation to A and add a vertex x complete to B. Let Hn be the resulting graph
(see Figure 27). By Lemma 11, combined with Facts 1 and 2, the family of such graphs
has unbounded clique‐width. Note that x is complete to the independent set B and anti‐
complete to the clique A. Every vertex in B has exactly two neighbours in A and every
vertex in A has either two or three neighbours in B. Furthermore, no two vertices in B

have the same pair of neighbours in A.
We prove that Hn is an atom. Suppose, for contradiction, that X is a clique cut‐set of

Hn. If ∈x X , then X can contain at most one other vertex (which must be in the
independent set B). Since every vertex in B has neighbours in the clique A, it follows that
⧹H Xn is connected. We may therefore assume that ∉x X . Since B is an independent set,
∩ ≤ B X 1, so every vertex of A has a neighbour in ⧹B X . Since x is complete to B, it

follows that every vertex of ⧹B X is in the same component of ⧹B X as x, and so ⧹H Xn is
connected, a contradiction. We conclude that Hn is indeed an atom.

It remains to show that Hn is P P P P P P P( + , + 2 , + 2 , )2 3 1 2 1 2 6 ‐free. Note that
∪H A B[ ]n is a split graph, so it is P P(2 , 2 )2 2 ‐free. Therefore every induced P2 2 or P2 2

in Hn contains the vertex x . Suppose, for contradiction, that Hn contains an induced
P P+2 3 or P P+ 21 2 , say on vertex set Y . Since P P+2 3 and P P+ 21 2 each contain an
induced P2 2 , it follows that ∈x Y . Since x has two neighbours and one non‐neighbour in
this P2 2 , this P2 2 consists of the vertex x , two vertices in B and one vertex in A. Now Y

contains one more vertex y, which is adjacent to either three or four of the remaining
vertices of Y . Now y cannot be in B, since B is an independent set and there are two
vertices in ∩ ⧹B Y y( ) { }, so ∈y A. Therefore ∩A Y contains two vertices with two
common neighbours in B, contradicting the fact that no two vertices of B have the same
two neighbours in A. We conclude that Hn is indeed P P P P( + , + 2 )2 3 1 2 ‐free. Now
suppose, for contradiction, that Hn contains an induced P P+ 21 2 or an induced P6, say on
vertex set Y . Since P P+ 21 2 and P6 each contain an induced P2 2, we find that ∈x Y . Every
vertex in P P+ 21 2 and P6 has at least three non‐neighbours. Since x is complete to B, it
follows that ∩ ≥ A Y 3. But A is a clique and so ∩H A Y[ ]n contains a K3, which is a

FIGURE 27 The graph Hn from the proof of Lemma 26 (n = 3 shown). Vertices are denoted A or B if they
are in the corresponding set.
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contradiction, since P P+ 21 2 and P6 are K3‐free. We conclude that Hn is P P P( + 2 , )1 2 6 ‐free.
Hence, Hn is P P P P P P P( + , + 2 , + 2 , )2 3 1 2 1 2 6 ‐free. □

Lemma 27. The class of P P P(2 , + )2 2 4 ‐free atoms has unbounded clique‐width (see
Figure 28 for illustrations of the forbidden induced subgraphs).

Proof. Let ≥n 2 and construct the graph Gn as follows (see also Figure 29). Let the
vertex set ofGn be ∈ ≠ ∪v i j n i j v{ , {0, …, }, ( , ) (0, 0)} { }i j n, 0, +1 . For ∈i j k n, , {1, …, }, add
an edge between vi j, and vk,0 if ≥k i, add an edge between vi j, and v k0, if ≥k j, and add an
edge between vi j, and v n0, +1. Let ∈A v i n= { {1, …, }}i,0 , ∈B v j n= { {1, …, + 1}}j0, ,
and ∈C v i j n= { , {1, …, }}i j, . Apply a bipartite complementation between A and B and

FIGURE 28 The forbidden induced subgraphs for the class of P P P(2 , + )2 2 4 ‐free graphs mentioned in
Lemma 27.

FIGURE 29 The graphGn constructed in the proof of Lemma 27. The set A is a clique. For clarity, the edges
between ∪A B and C are depicted for only one vertex in C . [Color figure can be viewed at
wileyonlinelibrary.com]
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apply a complementation to A. By Lemma 10 combined with Facts 1–3, the family of
graphs Gn has unbounded clique‐width.

We claim that Gn is an atom. Suppose, for contradiction, that X is a clique cut‐set ofGn.
Since v n0, and v n0, +1 are non‐adjacent, but complete to C, it follows that every vertex of C is
in the same component of ⧹G Xn . Since C is independent, at most one vertex of C is in X .
Since every vertex in ∪A B has at least two neighbours in C, it follows that every vertex of
⧹G Xn is in the same component of ⧹G Xn , a contradiction. ThereforeGn is indeed an atom.
Now suppose, for contradiction, that Gn contains an induced subgraph isomorphic to

P2 2, say on vertex set Y . Since ∪G A C[ ]n is a split graph, it is P2 2‐free, so Y must contain
at least one vertex of B. Since ∪G B C[ ]n is a bipartite chain graph, it is P2 2‐free, so Y
contains at least one vertex of A. Since A is complete to B, it follows that Y contains
exactly one vertex of A and exactly one vertex of B, and these two vertices are adjacent.
Therefore ∩Y C contains two adjacent vertices, contradicting the fact that C is
independent. We conclude that Gn is P2 2‐free.

Next suppose, for contradiction, that Gn contains an induced subgraph isomorphic to
P P+2 4 , say on vertex set Y . Since P P+2 4 is P3 1‐free, and B and C are independent, it
follows that ∩ ≤ B Y 2 and ∩ ≤ C Y 2. Therefore ∩ ≥ A Y 6 − 2 − 2 = 2. Now

∪G A B[ ]n and ∪G A C[ ]n are split graphs and therefore C4‐free. Since P P+2 4 contains
an induced P C2 =2 4, it follows that ∩ ≥ C Y 1 and ∩ ≥ B Y 1. Since A is a clique that
is complete to B and P P+2 4 is K4‐free, it follows that ∩ ≤ A Y 2. Therefore
∩ ∩ ∩     A Y B Y C Y= = = 2. Since B and C are cliques in Gn , we observe that all

vertices in ∩B Y are in the same component of G Y[ ]n , and all vertices in ∩C Y are in
the same component of G Y[ ]n . Furthermore, since in Gn the set A is independent and
anti‐complete to B, the vertices in ∪ ∩A C Y( ) form the P4‐component of G Y[ ]n , and
vertices in ∩B Y form the P2‐component of G Y[ ]n . Therefore ∪ ∩G A C Y[( ) ]n is
isomorphic to P4, which means that in Gn there must be two vertices in the clique C that
have private neighbours in the independent set A. By the construction ofGn , the vertices
in C can be linearly ordered according to their neighbourhood in A, a contradiction.
Therefore Gn is indeed P P+2 4 ‐free. □

Lemma 28. The class of P P P(2 , , 3 )2 5 2 ‐free atoms has unbounded clique‐width (see
Figure 30 for illustrations of the forbidden induced subgraphs).

Proof. Consider a wall of height ≥k 2 and note that it is a bipartite graph, say with parts
A and B. Apply a complementation to A and add two vertices x and y that are complete
to ∪A B. Let Hk be the resulting graph (see Figure 31). By Lemma 11, combined with
Facts 1 and 2, the class of such graphs has unbounded clique‐width.

FIGURE 30 The forbidden induced subgraphs for the class of P P P(2 , , 3 )2 5 2 ‐free graphs mentioned in
Lemma 28.
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We claim that Hk is an atom. Suppose, for contradiction, that X is a clique cut‐set of Hk.
Since x is non‐adjacent to y, at most one of x and y is in X . Without loss of generality, we
may assume that ∉y X . Now y is adjacent to every vertex of ∪A B, so

∪ ∪ ⧹H y A B X[{ } ( ) ]k is connected. Since ∪A B is not a clique, there must be at least
one vertex in ∪ ⧹A B X( ) . Therefore, if ∉x X then x is in the same component of ⧹H Xk as y
is. It follows that ⧹H Xk is connected, a contradiction. Therefore Hk is indeed an atom.

It remains to show that Hk is P P P(2 , , 3 )2 5 2 ‐free. First, note that ⧹H x{ }k and ⧹H y{ }k are
split graphs, so they are P P(2 , 2 )2 2 ‐free, and therefore P P P P(2 , , + 2 )2 5 1 2 ‐free and note that
this also implies that Hk is P3 2 ‐free. Therefore, if Hk contains an induced P2 2 or P5 , then
this induced copy must contain both x and y. Since x and y are false twins in Hk, but P2 2

and P5 do not contain two vertices that are false twins, it follows that Hk is P P(2 , )2 5 ‐free.
This completes the proof. □

It is not known whether the clique‐width of K S( , )3 1,2,3 ‐free graphs is bounded or
unbounded. Recall that this case is equivalent to the open case for P S(3 , )1 1,2,3 ‐free graphs; see
also Open Problem 1. As a final result of this section, we observe that the boundedness for these
cases also matches their atom counterparts.

Lemma 29. The class of K S( , )3 1,2,3 ‐free atoms has bounded clique‐width if and only if the
class of K S( , )3 1,2,3 ‐free graphs has bounded clique‐width if and only if the class of
P S(3 , )1 1,2,3 ‐free atoms has bounded clique‐width (see Figure 32 for illustrations of the

forbidden induced subgraphs).

Proof. We first observe that neither K3 nor S1,2,3 contains a pair of false twins. Therefore,
by Lemma 13, the class of K S( , )3 1,2,3 ‐free atoms has bounded clique‐width if and only if
the class of K S( , )3 1,2,3 ‐free graphs has bounded clique‐width. By Fact 2, the class of
K S( , )3 1,2,3 ‐free graphs has bounded clique‐width if and only if the class of P S(3 , )1 1,2,3 ‐free
graphs has bounded clique‐width.

FIGURE 31 The graph Hk from the proof of Lemma 28 (k = 3 shown). Vertices are denoted A or B if they
are in the corresponding set.
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We observe that neither P3 1 nor S1,2,3 has a dominating vertex or a pair of non‐adjacent
vertices that are complete to the remainder of the graph. Therefore, by Lemma 14, the class
of P S(3 , )1 1,2,3 ‐free graphs has bounded clique‐width if and only if the class of P S(3 , )1 1,2,3 ‐
free atoms has bounded clique‐width. □

6 | PROOF OF THEOREM 3

Recall the definition of equivalent bigenic classes given at the start of Section 4. To make
Theorem 3 easier to compare to Theorem 9, in this section we will use the following
reformulation of it, where we group classes together if they are equivalent, and we will prove
this reformulated version of the theorem instead (it is easy to verify that Theorems 3 and 30
cover the same graph classes).

Theorem 30. Let  be a class of graphs defined by two forbidden induced subgraphs.

1. The class of atoms in  has bounded clique‐width if it is equivalent to a class of H H( , )1 2 ‐
free graphs such that one of the following holds:
(i) H1 or ⊆H Pi2 4,
(ii) H K= s1 and H tP=2 1 for some ≥s t, 1,
(iii) ⊆H pawi1 and ⊆H K P K P P P P P P P S P+ 3 , + , + + , + , + , +i2 1,3 1 1,3 2 1 2 3 1 5 1 1,1,2 2

P P S, ,4 6 1,1,3 or S1,2,2,
(iv) ⊆H diamondi1 and ⊆H P P P P+ 2 , 3 +i2 1 2 1 2 or P P+2 3,
(v) ⊆H gemi1 and ⊆H P P+i2 1 4 or P5,
(vi) ⊆H K P+i1 3 1 and ⊆H Ki2 1,3 or
(vii) ⊆H P P2 +i1 1 3 and ⊆H P P2 +i2 1 3.

2. The class of atoms in  has bounded clique‐width if  is a subclass of the class of:
(i) P P( , 2 )6 2 ‐free graphs or
(ii) P P P(2 , + )2 2 3 ‐free graphs.
3. The class of atoms in  has unbounded clique‐width if it is equivalent to a class of

H H( , )1 2 ‐free graphs such that one of the following holds:
(i) ∉H1 and ∉H2 ,
(ii) ∉H1 and ∉H2 ,
(iii) ⊇H K P+i1 3 1 and ⊇H P4i2 1 or P2 2,
(iv) ⊇H diamondi1 and ⊇H K P, 5i2 1,3 1 or P P+2 4,
(v) ⊇H Ki1 3 and ⊇H P P P P P P P2 + 2 , 2 + , 4 + , 3i2 1 2 1 4 1 2 2 or P2 3,
(vi) ⊇H Ki1 4 and ⊇H P P P P+ , 3 +i2 1 4 1 2 or P2 2 or

FIGURE 32 The forbidden induced subgraphs for the classes of K S( , )3 1,2,3 ‐free graphs and P S(3 , )1 1,2,3 ‐free
graphs mentioned in Lemma 29.
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(vii) ⊇H gemi1 and ⊇H P P+ 2i2 1 2.
4. The class of atoms in  has unbounded clique‐width if it contains the class of H H( , )1 2 ‐free

graphs such that one of the following holds:
(i) ⊇H diamondi1 and ⊇H P P+i2 1 6,
(ii) ⊇H P P2 +i1 1 2 and ⊇H Pi2 6 ,
(iii) ⊇H gemi1 and ⊇H Pi2 6,
(iv) ⊇H P P+ 2i1 1 2 or P6 and ⊇H P P+ 2i2 1 2 or P P+2 3 or
(v) ⊇H P2i1 2 and ⊇H P P P+ , 3i2 2 4 2 or P5 .

Proof. We start by considering the bounded cases. Theorem 30.1 follows immediately
from Theorem 9.1. Theorem 30.2(i) follows from the fact that P P( , 2 )6 2 ‐free atoms have
bounded clique‐width [41]. Theorem 30.2(ii) follows from the fact that P P P(2 , + )2 2 3 ‐
free atoms have bounded clique‐width (Theorem 2). Next, we consider the unbounded
cases. Theorem 30.3(i) and Theorem 30.3(ii) follow from Lemma 12. Theorem 30.3(iii)
follows from Lemma 15. Theorem 30.3(iv) follows from Lemmas 15, 16 and 17.
Theorem 30.3(v) follows from Lemmas 18 and 19. Theorem 30.3(vi) follows from
Lemmas 20, 21 and 22. Theorem 30.3(vii) follows from Lemma 23. Theorem 30.4(i)
follows from Lemma 17. Theorem 30.4(ii) follows from Lemma 24. Theorem 30.4(iii)
follows from Lemma 25. Theorem 30.4(iv) follows from Lemma 26. Theorem 30.4(v)
follows from Lemmas 27 and 28. □

In the open problem below, the cases marked with a * are those for which even the
boundedness of clique‐width of the whole class of H H( , )1 2 ‐free graphs is unknown (see also
Open Problem 1 in Section 4).

Open Problem 2. Does the class of H H( , )1 2 ‐free atoms have bounded clique‐width if

(i) H = diamond1 and H P=2 6,
(ii) H C=1 4 and ∈H P P P P P{ + 2 , + , 3 }2 1 2 2 4 2 ,
(iii) H P P= + 21 1 2 and ∈H P P P P{2 , + , }2 2 2 3 5 ,
(iv) H P P= +1 2 3 and ∈H P P P{ + , }2 2 3 5 ,
*(v) H K=1 3 and ∈H P S S{ + , }2 1 1,1,3 1,2,3 ,
*(vi) H P= 31 1 and H P S= +2 1 1,1,3 ,
*(vii) H = diamond1 and ∈H P P P P P{ + + , + }2 1 2 3 1 5 ,
*(viii) H P P= 2 +1 1 2 and ∈H P P P P P{ + + , + }2 1 2 3 1 5 ,
*(ix) H = gem1 and H P P= +2 2 3 or
*(x) H P P= +1 1 4 and H P P= +2 2 3 .

Olariu [59] proved that every connected P P+1 3 ‐free graph is either K3‐free or complete
multi‐partite. Since complete multi‐partite graphs and their complements have bounded clique‐
width, when looking at boundedness of clique‐width of a hereditary class, forbidding P P+1 3 as
an induced subgraph is equivalent to forbidding K3 and forbidding P P+1 3 is equivalent to
forbidding P3 1. Thus, when studying boundedness of clique‐width we may assume that we
never explicitly forbid P P+1 3 or P P+1 3. Furthermore, by Lemma 29, the class of K S( , )3 1,2,3 ‐
free atoms has bounded clique‐width if and only if the class of P S(3 , )1 1,2,3 ‐free atoms has
bounded clique‐width, so we may assume ≠H H P S{ , } {3 , }1 2 1 1,2,3 . We now state the following
theorem.
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Theorem 31. Let H1 and H2 be graphs (which are not isomorphic to P P+1 3 or P P+1 3)
with ≠H H P S{ , } {3 , }1 2 1 1,2,3 and let  be the class of H H( , )1 2 ‐free graphs. Then
(un)boundedness of clique‐width for atoms in  does not follow from Theorem 30 if and
only if this class is listed in Open Problem 2.

Proof. First, note that Theorem 30 does not specify the (un)boundedness of clique‐
width for atoms in any of the classes listed in Open Problem 2.

Consider the classes listed in Open Problem 1. For all bigenic classes  for which the
(un)boundedness of clique‐width of general graphs is not listed in Theorem 9, an
equivalent class is listed in Open Problem 1 (see [31, 36]). Since the results in
Theorem 30.2 do not solve these cases when restricted to atoms, these classes (and their
complements, apart from the H P= 31 1, H S=2 1,2,3 ) appear in Open Problem 2(v)–(x).
The only other classes we need to consider are those for which Theorem 9.2 states that
the class  has unbounded clique‐width, but the class of atoms in  might not have
unbounded clique‐width.

There are two classes listed in Theorem 9.2 that are not listed in Theorem 30.3,
namely, the class of P P(2 , 2 )2 2 ‐free graphs and the class of P P P(2 + , )1 2 6 ‐free graphs. The
class of P P(2 , 2 )2 2 ‐free graphs is only equivalent to itself. The class of P P P(2 + , )1 2 6 ‐free
graphs equivalent to only one other class, namely, the class of P P P(2 + , )1 2 6 ‐free graphs.
However, the class of P P P(2 + , )1 2 6 ‐free atoms has unbounded clique‐width by
Theorem 30.4(ii). We therefore only need to consider the class of P P(2 , 2 )2 2 ‐free graphs
and the class of P P P(2 + , )1 2 6 ‐free, together with any bigenic classes′ that are extensions
of these classes such that Theorem 30 does not specify that the atoms of ′ have
unbounded clique‐width.

We start by considering extensions of the classes of P P P(2 + , )1 2 6 ‐free graphs.
Consider graphs H1, H2 with ⊆P P H2 + i1 2 1 and ⊆P Hi6 2 such that the class of
H H( , )1 2 ‐free atoms has bounded clique‐width, but Theorem 30 does not state that
H H( , )1 2 ‐free atoms have unbounded clique‐width. By Theorem 30.3(ii), it follows that

∈H1 . By Theorem 30.3(iii), it follows that H1 is K1,3‐free, so it is a linear forest. By
Theorem 30.3(vi), it follows that H1 is P4 1‐free. By Theorem 30.4(iii), H1 must be
P P( + )1 4 ‐free. By Theorem 30.4(iv), H1 must be P P P P( + 2 , + )1 2 2 3 ‐free. The
1‐vertex extensions of P P2 +1 2 in  are P P3 +1 2, P P P P P P P P+ 2 , 2 + , + , +1 2 1 3 1 4 2 3

and S1,1,2, none of which are K P P P P P P P( , 4 , + , + 2 , + )1,3 1 1 4 1 2 2 3 ‐free. We conclude that
H P P= 2 +1 1 2. By Theorem 30.3(i), it follows that ∈H2 . By Theorem 30.3(iv), it
follows that H2 is K P P( , + )1,3 2 4 ‐free. By Theorem 30.4(i), it follows that H2 is P P( + )1 6 ‐
free. The 1‐vertex extensions of P6 that are in  are P P+1 6, P7, S1,1,4 and S1,2,3, none of
which are K P P P P( , + , + )1,3 2 4 1 6 ‐free. We conclude that H P=2 6. Therefore, we do not
need to consider any extensions of P P P(2 + , )1 2 6 ‐free graphs, apart from the class of
P P P(2 + , )1 2 6 ‐free graphs itself, and this is listed in Open Problem 2(i).
Now consider graphs H1, H2 with ⊆P H H2 ,i2 1 2 such that the class of H H( , )1 2 ‐free

atoms has bounded clique‐width, but Theorem 30 does not state that H H( , )1 2 ‐free atoms
have unbounded clique‐width. By Theorems 30.3(i) and 3(ii), respectively, H1 and H2

must both be in  . By Theorem 30.3(iii), it follows that H1 and H2 are K1,3‐free, so they
are both linear forests. By Theorem 30.3(vi), H1 and H2 are P4 1‐free, and because they are
bipartite, this means they each contain at most six vertices. Since H1 and H2 are linear
forests on at most six vertices containing an induced P2 2, it follows that ∈H H,1 2

P P P P P P P P P P P P P P P P P P{2 , + 2 , + , , 2 + 2 , 3 , + + , + , + , 2 , }2 1 2 2 3 5 1 2 2 1 2 3 2 4 1 5 3 6 . Since H1
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and H2 are P4 1‐free, it follows that ∈H H P P P P P P P P P P, {2 , + 2 , + , , 3 , + , }1 2 2 1 2 2 3 5 2 2 4 6 . By
Theorem 30.4(v), H2 is P P P P( + , 3 , )2 4 2 5 ‐free, and so ∈H P P P P P{2 , + 2 , + }2 2 1 2 2 3 .
Now if H P= 22 2, then by Theorem 30.2(i), we may assume that H1 is not an induced
subgraph of P6, so ∈H P P P P P{ + 2 , 3 , + }1 1 2 2 2 4 and these cases are listed in Open Problem
2(ii). Otherwise, ∈H P P P P{ + 2 , + }2 1 2 2 3 . In this case by Theorem 30.4(iv) H1 is
P P P( + 2 , )1 2 6 ‐free, so ∈H P P P P{2 , + , }1 2 2 3 5 . If H P P= + 22 1 2 then ∈H P P P P{2 , + , }1 2 2 3 5

and these cases are listed in Open Problem 2(iii). If H P P= +2 2 3 then by
Theorem 30.2(ii), H1 is not an induced subgraph of P2 2, so ∈H P P P{ + , }1 2 3 5 and these
cases are listed in Open Problem 2(iv). □

7 | CONCLUSIONS

Motivated by algorithmic applications, we determined a new class of H H( , )1 2 ‐free graphs of
unbounded clique‐width whose atoms have bounded clique‐width, namely, when
H H P P P( , ) = (2 , + )1 2 2 2 3 (in fact, our proof for P P P(2 , + )2 2 3 ‐free atoms also works for linear
clique‐width). We also identified a number of classes of H H( , )1 2 ‐free graphs of unbounded
clique‐width whose atoms still have unbounded clique‐width. In particular, our results show
that boundedness of clique‐width of H H( , )1 2 ‐free atoms does not necessarily imply
boundedness of clique‐width of H H( , )1 2 ‐free atoms. For example, C P( , )4 5 ‐free atoms have
bounded clique‐width [41], but we proved that C P( , )4 5 ‐free atoms have unbounded clique‐
width (Lemma 28).

We also presented a summary theorem (Theorem 3), from which we deduced a list
of 18 remaining cases of pairs H H( , )1 2 for which we do not know whether the clique‐width
of H H( , )1 2 ‐free atoms is bounded; see also Open Problem 2 and Theorem 31. In
particular, we ask whether boundedness of clique‐width of P P P(2 , + )2 2 3 ‐free atoms can
be extended to P P P( , + )5 2 3 ‐free atoms. Is boundedness of clique‐width the underlying
reason why COLOURING is polynomial‐time solvable on P P P( , + )5 2 3 ‐free graphs [58]?
Brandstädt and Hoàng [11] showed that P P P( , + )5 2 3 ‐free atoms with no dominating
vertices and no vertex pairs x y{ , } with ⊆N x N y( ) ( ) are either isomorphic to some specific
graph G* or all their induced C5s are dominating. Recently, Huang and Karthick [49]
proved a more refined decomposition. However, it is not clear how to use these results to
prove boundedness of clique‐width of P P P( , + )5 2 3 ‐free atoms, and additional insights are
needed.
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