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Abstract. We study the computational complexity of two well-known
graph transversal problems, namely Subset Feedback Vertex Set

and Subset Odd Cycle Transversal, by restricting the input to H-
free graphs, that is, to graphs that do not contain some �xed graph H as
an induced subgraph. By combining known and new results, we deter-
mine the computational complexity of both problems on H-free graphs
for every graph H except when H = sP1 + P4 for some s ≥ 1. As part
of our approach, we introduce the Subset Vertex Cover problem and
prove that it is polynomial-time solvable for (sP1 + P4)-free graphs for
every s ≥ 1.

1 Introduction

The central question in Graph Modi�cation is whether or not a graph G can be
modi�ed into a graph from a prescribed class G via at most k graph operations
from a prescribed set S of permitted operations such as vertex or edge dele-
tion. The transversal problems Vertex Cover, Feedback Vertex Set and
Odd Cycle Transversal are classical problems of this kind. For example,
the Vertex Cover problem is equivalent to asking if one can delete at most k
vertices to turn G into a member of the class of edgeless graphs. The problems
Feedback Vertex Set and Odd Cycle Transversal ask if a graph G can
be turned into, respectively, a forest or a bipartite graph by deleting vertices.

We can relax the condition on belonging to a prescribed class to obtain
some related subset transversal problems. We state these formally after some
de�nitions. For a graph G = (V,E) and a set T ⊆ V , an (odd) T -cycle is a cycle
of G (with an odd number of vertices) that intersects T . A set ST ⊆ V is a
T -vertex cover, a T -feedback vertex set or an odd T -cycle transversal of G if ST

has at least one vertex of, respectively, every edge incident to a vertex of T , every
T -cycle, or every odd T -cycle. For example, let G be a star with centre vertex c,
whose leaves form the set T . Then, both {c} = V \ T and T are T -vertex covers
of G but the �rst is considerably smaller than the second. See Figure 1 for some
more examples.
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Subset Vertex Cover

Instance: a graph G = (V,E), a subset T ⊆ V and a positive integer k.
Question: does G have a T -vertex cover ST with |ST | ≤ k?

Subset Feedback Vertex Set

Instance: a graph G = (V,E), a subset T ⊆ V and a positive integer k.
Question: does G have a T -feedback vertex set ST with |ST | ≤ k?

Subset Odd Cycle Transversal

Instance: a graph G = (V,E), a subset T ⊆ V and a positive integer k.
Question: does G have an odd T -cycle transversal ST with |ST | ≤ k?

Fig. 1. In both examples, the square vertices of the Petersen graph form a set T and
the black vertices form an odd T -cycle transversal ST , which is also a T -feedback vertex
set. In the left example, ST \ T 6= ∅, and in the right example, ST ⊆ T .

The Subset Feedback Vertex Set and Subset Odd Cycle Transversal
problems are well known. The Subset Vertex Cover problem is introduced
in this paper, and we are not aware of past work on this problem. On general
graphs, Subset Vertex Cover is polynomially equivalent to Vertex Cover:
to solve Subset Vertex Cover remove edges in the input graph that are not
incident to any vertex of T to yield an equivalent instance of Vertex Cover.
However, this equivalence no longer holds for graph classes that are not closed
under edge deletion.

As the three problems are NP-complete, we consider the restriction of the
input to special graph classes in order to better understand which graph prop-
erties cause the computational hardness. Instead of classes closed under edge
deletion, we focus on classes of graphs closed under vertex deletion. Such classes
are called hereditary. The reasons for this choice are threefold. First, hereditary
graph classes capture many well-studied graph classes. Second, every hereditary
graph class G can be characterized by a (possibly in�nite) set FG of forbidden
induced subgraphs. This enables us to initiate a systematic study, starting from
the case where |FG | = 1. Third, we aim to extend and strengthen existing com-
plexity results (that are for hereditary graph classes). If FG = {H} for some
graph H, then G is monogenic, and every G ∈ G is H-free. Our research question
is: How does the structure of a graph H in�uence the computational complexity
of a subset transversal problem for input graphs that are H-free?



As a general strategy one might �rst try to prove that the restriction to H-free
graphs is NP-complete if H contains a cycle or an induced claw (the 4-vertex
star). This is usually done by showing, respectively, that the problem is NP-
complete on graphs of arbitrarily large girth (the length of a shortest cycle) and
on line graphs, which form a subclass of claw-free graphs. If this is the case, then
it remains to consider the case where H has no cycle, and has no claw either.
So H is a linear forest, that is, the disjoint union of one or more paths.

Existing Results As NP-completeness results for transversal problems carry
over to subset transversal problems, we �rst discuss results on Feedback Ver-

tex Set and Odd Cycle Transversal for H-free graphs. By Poljak's con-
struction [33], Feedback Vertex Set is NP-complete for graphs of girth at
least g for every integer g ≥ 3. The same holds for Odd Cycle Transver-

sal [8]. Moreover, Feedback Vertex Set [35] and Odd Cycle Transver-

sal [8] are NP-complete for line graphs and thus for claw-free graphs. Hence,
both problems are NP-complete for H-free graphs if H has a cycle or claw.
Both problems are polynomial-time solvable for P4-free graphs [5], for sP2-free
graphs for every s ≥ 1 [8] and for (sP1 + P3)-free graphs for every s ≥ 1 [13].
In addition, Odd Cycle Transversal is NP-complete for (P2 + P5, P6)-free
graphs [13]. Very recently, Abrishami et al. showed that Feedback Vertex

Set is polynomial-time solvable for P5-free graphs [1]. We summarize as follows
(F ⊆i G means that F is an induced subgraph of G; see Section 2 for the other
notation used).

Theorem 1. For a graph H, Feedback Vertex Set on H-free graphs is
polynomial-time solvable if H ⊆i P5, H ⊆i sP1 + P3 or H ⊆i sP2 for some
s ≥ 1, and NP-complete if H ⊇i Cr for some r ≥ 3 or H ⊇i K1,3.

Theorem 2. For a graph H, Odd Cycle Transversal on H-free graphs is
polynomial-time solvable if H = P4, H ⊆i sP1+P3 or H ⊆i sP2 for some s ≥ 1,
and NP-complete if H ⊇i Cr for some r ≥ 3, H ⊇i K1,3, H ⊇i P6 or H ⊇i

P2 + P5.

We note that no integer r is known such that Feedback Vertex Set is
NP-complete for Pr-free graphs. This situation changes for Subset Feedback

Vertex Set which is, unlike Feedback Vertex Set, NP-complete for split
graphs (that is, (2P2, C4, C5)-free graphs), as shown by Fomin et al. [16]. Pa-
padopoulos and Tzimas [31,32] proved that Subset Feedback Vertex Set is
polynomial-time solvable for sP1-free graphs for any s ≥ 1, co-bipartite graphs,
interval graphs and permutation graphs, and thus P4-free graphs. Some of these
results were generalized by Bergougnoux et al. [2], who solved an open problem

of Ja�ke et al. [22] by giving an nO(w2)-time algorithm for Subset Feedback

Vertex Set given a graph and a decomposition of this graph of mim-width w.
This does not lead to new results for H-free graphs: a class of H-free graphs has
bounded mim-width if and only if H ⊆i P4 [7].

We are not aware of any results on Subset Odd Cycle Transversal

for H-free graphs, but note that this problem generalizes Odd Multiway Cut,



just as Subset Feedback Vertex Set generalizes Node Multiway Cut, an-
other well-studied problem. We refer to [9,12,16,17,19,24,25,26,27,21] for further
details, in particular for parameterized and exact algorithms for Subset Feed-
back Vertex Set and Subset Odd Cycle Transversal. These algorithms
are beyond the scope of this paper.

Our Results By a signi�cant extension of the known results for the two prob-
lems on H-free graphs we obtain two almost-complete dichotomies:

Theorem 3. Let H be a graph with H 6= sP1 + P4 for all s ≥ 1. Then Subset
Feedback Vertex Set on H-free graphs is polynomial-time solvable if H = P4

or H ⊆i sP1 + P3 for some s ≥ 1 and NP-complete otherwise.

Theorem 4. Let H be a graph with H 6= sP1 + P4 for all s ≥ 1. Then Subset
Odd Cycle Transversal on H-free graphs is polynomial-time solvable if H =
P4 or H ⊆i sP1 + P3 for some s ≥ 1 and NP-complete otherwise.

Though the proved complexities of Subset Feedback Vertex Set and
Subset Odd Cycle Transversal are the same on H-free graphs, the algo-
rithm that we present for Subset Odd Cycle Transversal on (sP1 + P3)-
free graphs is more technical compared to the algorithm for Subset Feed-

back Vertex Set, and considerably generalizes the transversal algorithms for
(sP1+P3)-free graphs of [13]. There is further evidence that Subset Odd Cycle
Transversal is a more challenging problem than Subset Feedback Vertex

Set. For example, the best-known parameterized algorithm for Subset Feed-

back Vertex Set runs in O∗(4k) time [21], but the best-known run-time for

Subset Odd Cycle Transversal is O∗(2O(k3 log k)) [27]. Moreover, it is not
known if there is an XP algorithm for Subset Odd Cycle Transversal in
terms of mim-width in contrast to the known XP algorithm for Subset Feed-

back Vertex Set [2].
In Section 2 we introduce our terminology. In Section 3 we present some

results for Subset Vertex Cover: the �rst result shows that Subset Vertex
Cover is polynomial-time solvable for (sP1 + P4)-free graphs for every s ≥ 1,
and we later use this as a subroutine to obtain a polynomial-time algorithm for
Subset Odd Cycle Transversal on P4-free graphs. We present our results
on Subset Feedback Vertex Set and Subset Odd Cycle Transversal

in Sections 4 and 5, respectively. In Section 6 on future work we discuss Subset
Vertex Cover in more detail.

2 Preliminaries

We consider undirected, �nite graphs with no self-loops and no multiple edges.
Let G = (V,E) be a graph, and let S ⊆ V . The graph G[S] is the subgraph of G
induced by S. We write G − S to denote the graph G[V \ S]. Recall that for a
graph F , we write F ⊆i G if F is an induced subgraph of G. The cycle and path
on r vertices are denoted Cr and Pr, respectively. We say that S is independent



if G[S] is edgeless, and that S is a clique if G[S] is complete, that is, contains
every possible edge between two vertices. We let Kr denote the complete graph
on r vertices, and sP1 denote the graph whose vertices form an independent set
of size s. A (connected) component of G is a maximal connected subgraph of G.
The graph G = (V, {uv | uv 6∈ E and u 6= v}) is the complement of G. The
neighbourhood of a vertex u ∈ V is the set NG(u) = {v | uv ∈ E}. For U ⊆ V ,
we let NG(U) =

⋃
u∈U N(u) \ U . The closed neighbourhoods of u and U are

denoted by NG[u] = NG(u) ∪ {u} and NG[U ] = NG(U) ∪ U , respectively. We
omit subscripts when there is no ambiguity.

Let T ⊆ V be such that S ∩ T = ∅. Then S is complete to T if every vertex
of S is adjacent to every vertex of T , and S is anti-complete to T if there are no
edges between S and T . In the �rst case, S is also said to be complete to G[T ],
and in the second case we say it is anti-complete to G[T ].

We say that G is a forest if it has no cycles, and, furthermore, that G is
a linear forest if it is the disjoint union of one or more paths. The graph G is
bipartite if V can be partitioned into at most two independent sets. A graph is
complete bipartite if its vertex set can be partitioned into two independent setsX
and Y such that X is complete to Y . We denote such a graph by K|X|,|Y |. If X
or Y has size 1, the complete bipartite graph is a star; recall that K1,3 is also
called a claw. A graph G is a split graph if it has a bipartition (V1, V2) such that
G[V1] is a clique and G[V2] is an independent set. A graph is split if and only if
it is (C4, C5, 2P2)-free [15].

Let G1 and G2 be two vertex-disjoint graphs. The union operation + creates
the disjoint union G1 +G2 of G1 and G2 (recall that G1 +G2 is the graph with
vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2)).

We also consider optimization versions of subset transversal problems, in
which case we have instances (G,T ) (instead of instances (G,T, k)). We say that
a set S ⊆ V (G) is a solution for an instance (G,T ) if S is a T -transversal (of
whichever kind we are concerned with). A solution S is smaller than a solution
S′ if |S| < |S′|, and a solution S is minimum if (G,T ) does not have a solution
smaller than S, and it is maximum if there is no larger solution. We will use the
following general lemma, which was implicitly used in [32].

Lemma 1. Let S be a minimum solution for an instance (G,T ) of a subset
transversal problem. Then |S \ T | ≤ |T \ S|.

Let T ⊆ V be a vertex subset of a graph G = (V,E). Recall that a cycle
is a T -cycle if it contains a vertex of T . A subgraph of G is a T -forest if it has
no T -cycles. Recall also that a cycle is odd if it has an odd number of edges. A
subgraph of G is T -bipartite if it has no odd T -cycles. Recall that a set ST ⊆ V is
a T -vertex cover, a T -feedback vertex set or an odd T -cycle transversal of G if
ST has at least one vertex of, respectively every edge incident to a vertex of T ,
every T -cycle, or every odd T -cycle. Note that ST is a T -feedback vertex set if
and only if G[V \ ST ] is a T -forest, and ST is an odd T -cycle transversal if and
only if G[V \ ST ] is T -bipartite. A T -path is a path that contains a vertex of T .
A T -path is odd (or even) if the number of edges in the path is odd (or even,
respectively).



We will use the following easy lemma, which proves that T -forests and
T -bipartite graphs can be recognized in polynomial time. It combines results
claimed but not proved in [27,32].

Lemma 2. Let G = (V,E) be a graph and T ⊆ V . Then deciding whether or
not G is a T -forest or T -bipartite takes O(n+m) time.

3 Subset Vertex Cover

We need the following two results on Subset Vertex Cover (proofs omitted).

Lemma 3. Subset Vertex Cover can be solved in polynomial time for P4-
free graphs.

Lemma 4. Let H be a graph. If Subset Vertex Cover is polynomial-time
solvable for H-free graphs, then it is for (P1 +H)-free graphs as well.

Lemma 3, combined with s applications of Lemma 4, yields the following result.

Theorem 5. For every integer s ≥ 1, Subset Vertex Cover can be solved
in polynomial time for (sP1 + P4)-free graphs.

4 Subset Feedback Vertex Set

To prove Theorem 3. We require two lemmas. In the �rst lemma (whose proof
we omit), the bound of 4s− 2 is not necessarily tight, but su�ces for our needs.

Lemma 5. Let s be a non-negative integer, and let R be an (sP1+P3)-free tree.
Then either

(i) |V (R)| ≤ max{7, 4s− 2}, or
(ii) R has precisely one vertex r of degree more than 2 and at most s−1 vertices

of degree 2, each adjacent to r. Moreover, r has at least 3s− 1 neighbours.

We can extend �partial� solutions to full solutions in polynomial time as follows.

Lemma 6. Let G = (V,E) be a graph with a set T ⊆ V . Let V ′ ⊆ V and
S′T ⊆ V ′ such that S′T is a T -feedback vertex set of G[V ′], and let Z = V \ V ′.
Suppose that G[Z] is P3-free, and |NG−S′

T
(Z)| ≤ 1. Then there is a polynomial-

time algorithm that �nds a minimum T -feedback vertex set ST of G such that
S′T ⊆ ST and V ′ \ S′T ⊆ V \ ST .

Proof. Since G[Z] is P3-free, it is a disjoint union of complete graphs. Let G′ =
G−S′T , and consider a T -cycle C in G′. Then C contains at least one vertex of Z.
If NG′(Z) = ∅, then C is contained in a component of G[Z]. On the other hand,
if NG′(Z) = {y}, say, then y is a cut-vertex of G′, so there exists a component
G[U ] of G[Z] such that C is contained in G[U∪{y}]. Hence, we can consider each
component of G[Z] independently: for each component G[U ] it su�ces to �nd



the maximum subset U ′ of U such that G[U ′ ∪ NG′(U)] contains no T -cycles.
Then U ′ ⊆ FT and U \ U ′ ⊆ ST , where FT = V \ ST .

Let U ⊆ Z such that G[U ] is a component of G[Z]. Either NG′(U) ∩ T = ∅,
or NG′(U) = {y} for some y ∈ T . First, consider the case where NG′(U)∩T = ∅.
We �nd a set U ′ that is a maximum subset of U such that G[U ′ ∪NG′(U)] has
no T -cycles. Clearly if |U | = 1, then we can set U ′ = U . If |U ′| ≥ 3, then, since
U ′ is a clique, U ′ ⊆ V \ T . Thus, if |U \ T | ≥ 2, then we set U ′ = U \ T . So it
remains to consider when |U | ≥ 2 but |U \ T | ≤ 1. If there is some u ∈ U that
is anti-complete to NG′(U), then we can set U ′ to be any 2-element subset of U
containing u. Otherwise NG′(U) = {y} and y is complete to U . In this case, for
any u ∈ U , we set U ′ = {u}.

Now we may assume that NG′(U) = {y} and y ∈ T . Again, we �nd a set U ′

that is a maximum subset of U such that G[U ′∪{y}] has no T -cycles. Partition U
into {U0, U1} where u ∈ U1 if and only if u is a neighbour of y. Since y ∈ V ′ \S′T ,
observe that U ′ contains at most one vertex of U1, otherwise G[U ′ ∪ {y}] has
a T -cycle. Since U ′ is a clique, if |U ′| ≥ 3 then U ′ ⊆ U \ T . So if |U0 \ T | ≥ 2
and there is an element u ∈ U1 \ T , then we can set U ′ = {u} ∪ (U0 \ T ). If
|U0 \T | ≥ 2 but U1 \T = ∅, then we can set U ′ = U0 \T . So we may now assume
that |U0 \ T | ≤ 1. If U0 6= ∅ and |U | ≥ 2, then we set U ′ to any 2-element subset
of U containing some u ∈ U0. Clearly if |U | = 1, then we can set U ′ = U . So it
remains to consider when U0 = ∅ and |U1| ≥ 2. In this case, we set U ′ = {u} for
an arbitrary u ∈ U1. ut

We now prove the main result of this section.

Theorem 6. For every integer s ≥ 0, Subset Feedback Vertex Set can be
solved in polynomial time for (sP1 + P3)-free graphs.

Proof. Let G = (V,E) be an (sP1 + P3)-free graph for some s ≥ 0, and let
T ⊆ V . We describe a polynomial-time algorithm for the optimization version of
the problem on input (G,T ). Let ST ⊆ V such that ST is a minimum T -feedback
vertex set of G, and let FT = V \ ST , so G[FT ] is a maximum T -forest. Note
that G[FT ∩ T ] is a forest. We consider three cases: either

1. G[FT ∩ T ] has at least 2s components;

2. G[FT ∩ T ] has fewer than 2s components, and each of these components
consists of at most max{7, 4s− 2} vertices; or

3. G[FT ∩ T ] has fewer than 2s components, one of which consists of at least
max{8, 4s− 1} vertices.

We describe polynomial-time subroutines that �nd a set FT such that G[FT ] is
a maximum T -forest in each of these three cases, giving a minimum solution
ST = V \ FT in each case. We obtain an optimal solution by running each of
these subroutines in turn: of the (at most) three potential solutions, we output
the one with minimum size.

Case 1: G[FT ∩ T ] has at least 2s components.



We begin by proving a sequence of claims that describe properties of a maximum
T -forest FT , when in Case 1. Since G is (sP1 + P3)-free, FT ∩ T induces a P3-
free forest, so G[FT ∩ T ] is a disjoint union of graphs isomorphic to P1 or P2.
Let A ⊆ FT ∩ T such that G[A] consists of precisely 2s components. Note that
|A| ≤ 4s. We also let Y = N(A)∩FT , and partition Y into {Y1, Y2} where y ∈ Y1

if y has only one neighbour in A, whereas y ∈ Y2 if y has at least two neighbours
in A.

Claim 1: |Y2| ≤ 1.

Proof of Claim 1. Let v ∈ Y2. Then v has neighbours in at least s + 1 of the
components of G[A], otherwise G[A ∪ {v}] contains an induced sP1 + P3. Note
also that v has at most one neighbour in each component of G[A], otherwise
G[FT ] has a T -cycle. Now suppose that Y2 contains distinct vertices v1 and v2.
Then, of the 2s components of G[A], the vertices v1 and v2 each have some
neighbour in s+1 of these components. So there are at least two components of
G[A] containing both a vertex adjacent to v1, and a vertex adjacent to v2. Let A

′

and A′′ be the vertex sets of two such components. Then A′∪A′′∪{v1, v2} ⊆ FT ,
but G[A′ ∪A′′ ∪ {v1, v2}] has a T -cycle; a contradiction. �

Claim 2: |Y | ≤ 2s+ 1.

Proof of Claim 2. By Claim 1, it su�ces to prove that |Y1| ≤ 2s. We argue
that each component of G[A] has at most one neighbour in Y1, implying that
|Y1| ≤ 2s. Indeed, suppose that there is a component CA of G[A] having two
neighbours in Y1, say u1 and u2. Then G[V (CA)∪ {u1, u2}] contains an induced
P3 that is anti-complete to A \V (CA), contradicting that G is (sP1+P3)-free. �

Claim 3: Y1 is independent, and no component of G[A] of size 2 has a neighbour
in Y1.

Proof of Claim 3. Suppose that there are adjacent vertices u1 and u2 in Y1.
Let ai be the unique neighbour of ui in A for i ∈ {1, 2}. Note that a1 6= a2, for
otherwise G[FT ] has a T -cycle. Then {a1, u1, u2} induces a P3, so G[{u1, u2}∪A]
contains an induced sP1 + P3, which is a contradiction. We deduce that Y1 is
independent.

Now let {a1, a2} ⊆ A such that G[{a1, a2}] is a component of G[A], and
suppose that u1 ∈ Y1 is adjacent to a1. Then a1 is the unique neighbour of u1

in A, so G[{u1, a1, a2}] ∼= P3. Thus G[{u1} ∪ A] contains an induced sP1 + P3,
which is a contradiction. �

Claim 4: Let Z = V \N [A]. Then N(Z) ∩ FT ⊆ Y2.

Proof of Claim 4. Suppose that there exists y ∈ Y1 that is adjacent to a vertex
c ∈ Z. Let a be the unique neighbour of y in A. Then G[{c, y} ∪A] contains an
induced sP1 + P3, which is a contradiction. So Y1 is anti-complete to Z. Now,
if c ∈ Z is adjacent to a vertex in N [A] ∩ FT , then c is adjacent to y2 where
Y2 = {y2}. �
We now describe the subroutine that �nds an optimal solution in Case 1. In this
case, for any maximum forest FT , there exists some set A ⊆ T of size at most 4s
such that A ⊆ FT , and G[A] consists of exactly 2s components, each isomorphic
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Fig. 2. An example of the structure obtained in Case 1 when Y2 = {y2}.

to either P1 or P2. Moreover, there is such an A for which N(A) ∩ T ⊆ ST .
Thus we guess a set A′ ⊆ T in O(n4s) time, discarding those sets that do not
induce a forest with exactly 2s components, and those that induce a component
consisting of more than two vertices.

For any such FT and A′, the set N(A′) ∩ FT has size at most 2s + 1, by
Claim 2. Thus, in O(n2s+1) time, we guess Y ′ ⊆ N(A′) with |Y ′| ≤ 2s+ 1, and
assume that Y ′ ⊆ FT whereas N(A′) \Y ′ ⊆ ST . Let Y

′
2 be the subset of Y ′ that

contains vertices that have at least two neighbours in A′. We discard any sets
Y ′ that do not satisfy Claims 1 or 3, or those sets for which G[A′ ∪ Y ′] has a
T -cycle on three vertices, one of which is the unique vertex of Y ′2 .

Let Z = V \ N [A′] (for example, see Figure 2). Since G[A′] contains an
induced sP1, the subgraph G[Z] is P3-free. Now N(Z) ∩ FT ⊆ Y ′2 by Claim 4,
where |Y ′2 | ≤ 1 by Claim 1. Thus, by Lemma 6, we can extend a partial solution
S′T = N [A′] \ (A′ ∪ Y ′) of G[N [A′]] to a solution ST of G, in polynomial time.

Case 2:G[FT∩T ] has at most 2s−1 components, each of size at mostmax{7, 4s−
2}.
We guess sets F ⊆ T and S ⊆ V \T such that FT∩T = F and ST \T = S. Since F

has size at most (2s−1)max{7, 4s−2} vertices, there areO(nmax{14s−7,8s2−8s+2})
possibilities for F . By Lemma 1, we may assume that |ST \T | ≤ |F |. So for each

guessed F , there are at most O(nmax{14s−7,8s2−8s+2}) possibilities for S. For each
S and F , we set ST = (T \ F ) ∪ S and check, in O(n +m)-time by Lemma 2,
if G− ST is a T -forest. In this way we exhaustively �nd all solutions satisfying
Case 2, in O(nmax2{14s−7,8s2−8s+2}) time; we output the one of minimum size.

Case 3: G[FT ∩T ] has at most 2s−1 components, one of which has size at least
max{8, 4s− 1}.
By Lemma 5, there is some subset BT ⊆ FT ∩T such that |B| ≥ max{8, 4s−1},
and G[B] is a component of G[FT ∩ T ] that is a tree satisfying Lemma 5(ii). In
particular, there is a unique vertex r ∈ B such that r has degree more than 2 in
G[B]. Moreover, G[FT ] has a component G[D] that contains B, where G[D] is
a tree that also satis�es Lemma 5(ii). Note that there are at most s− 1 vertices
in NG[B](r) having a neighbour in V \ T .



We guess a set B′ ⊆ T such that |B′| = max{8, 4s− 1}. We also guess a set
L′ ⊆ V \ T such that |L′| ≤ s − 1. Let D′ = B′ ∪ L′. We check that G[D′] has
the following properties:

� G[D′] is a tree,
� G[D′] has a unique vertex r′ of degree more than 2, with r′ ∈ B′,
� G[D′] has at most s − 1 vertices with distance 2 from r′, and each of these

vertices has degree 1, and
� each vertex v ∈ L′ has degree 1 in G[D′], and distance 2 from r′.

We assume that D′ induces a subtree of the large component G[D], where
r = r′, and D′ contains r, all neighbours of r with degree 2 in G[D], and all
vertices at distance 2 from r. In other words, G[D′] can be obtained from G[D]
by deleting some subset of the leaves of G[D] that are adjacent to r. In particular,
D′ ⊆ FT . We also assume that L′ is the set of all vertices of V (D) \ T that have
distance 2 from r.

It follows from these assumptions that N(D′ \ {r}) \ {r} ⊆ ST . Let Z =
V \N [D′ \ {r}], and observe that each z ∈ Z has at most one neighbour in D′

(if it has such a neighbour, this neighbour is r). So N(Z) ∩ FT ⊆ {r}.
Towards an application of Lemma 6, we claim that G[Z] is P3-free. Let B1 =

B′ ∩ N(r). As r has at least 3s − 1 neighbours in G[B′], by Lemma 5, G[B1]
contains an induced sP1. Moreover, N(B1)∩FT ⊆ D′. Since G is (sP1+P3)-free,
G[Z] is P3-free. We now apply Lemma 6, which completes the proof. ut

We are now ready to prove Theorem 3.

Theorem 3 (restated). Let H be a graph with H 6= sP1+P4 for all s ≥ 1. Then
Subset Feedback Vertex Set on H-free graphs is polynomial-time solvable
if H = P4 or H ⊆i sP1 + P3 for some s ≥ 1 and is NP-complete otherwise.

Proof. If H has a cycle or claw, we use Theorem 1. The cases H = P4 and
H = 2P2 follow from the corresponding results for permutation graphs [31] and
split graphs [16]. The remaining case H ⊆i sP1+P3 follows from Theorem 6. ut

5 Subset Odd Cycle Transversal

At the end of this section we prove Theorem 4. We show three new results (proofs
omitted). Our �rst result uses the reduction of [31] which proved the analogous
result for Subset Feedback Vertex Set. Our third result is the main result
of this section. Its proof uses the same approach as the proof of Theorem 6 but
we need more advanced arguments for distinguishing cycles according to parity.

Theorem 7. Subset Odd Cycle Transversal is NP-complete for the class
of split graphs (or equivalently, (C4, C5, 2P2)-free graphs).

Theorem 8. Subset Odd Cycle Transversal can be solved in polynomial
time for P4-free graphs.



Theorem 9. For every integer s ≥ 0, Subset Odd Cycle Transversal can
be solved in polynomial time for (sP1 + P3)-free graphs.

We are now ready to prove our almost-complete classi�cation.

Theorem 4 (restated). Let H be a graph with H 6= sP1 + P4 for all s ≥ 1.
Then Subset Odd Cycle Transversal on H-free graphs is polynomial-time
solvable if H = P4 or H ⊆i sP1+P3 for some s ≥ 1 and NP-complete otherwise.

Proof. If H has a cycle or claw, we use Theorem 2. The cases H = P4 and
H = 2P2 follow from Theorems 7 and 8, respectively. The remaining case, where
H ⊆i sP1 + P3, follows from Theorem 9. ut

6 Conclusions

We gave almost-complete classi�cations of the complexity of Subset Feedback
Vertex Set and Subset Odd Cycle Transversal for H-free graphs. The
only open case in each classi�cation is when H = sP1+P4 for some s ≥ 1, which
is also open for Feedback Vertex Set and Odd Cycle Transversal for
H-free graphs. Our proof techniques for H = sP1 + P3 do not carry over and
new structural insights are needed in order to solve the missing cases where
H = sP1 + P4 for s ≥ 1.

We also introduced the Subset Vertex Cover problem and showed that
this problem is polynomial-time solvable on (sP1+P4)-free graphs for every s ≥
0. Lokshtanov et al. [28] proved thatVertex Cover is polynomial-time solvable
for P5-free graphs. Grzesik et al. [18] extended this result to P6-free graphs. What
is the complexity of Subset Vertex Cover for P5-free graphs? Does there
exist an integer r ≥ 5 such that Subset Vertex Cover is NP-complete for Pr-
free graphs. By Poljak's construction [33], Vertex Cover is NP-complete for
H-free graphs if H has a cycle. However, Vertex Cover becomes polynomial-
time solvable on K1,3-free graphs [29,34]. We did not research the complexity
of Subset Vertex Cover on K1,3-free graphs and also leave this as an open
problem for future work.

Finally, several related transversal problems have been studied but not yet
for H-free graphs. For example, the parameterized complexity of Even Cycle

Transversal and Subset Even Cycle Transversal has been addressed
in [30] and [24], respectively. Moreover, several other transversal problems have
been studied for H-free graphs, but not the subset version: for example, Con-
nected Vertex Cover, Connected Feedback Vertex Set and Con-

nected Odd Cycle Transversal, and also for Independent Feedback

Vertex Set and Independent Odd Cycle Transversal; see [4,8,14,23] for
a number of recent results. It would be interesting to solve the subset versions of
these transversal problems for H-free graphs and to determine the connections
amongst all these problems in a more general framework.
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