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Abstract

The classical, linear-time solvable Feedback Edge Set problem is concerned with finding
a minimum number of edges intersecting all cycles in a (static, unweighted) graph. We provide
a first study of this problem in the setting of temporal graphs, where edges are present only at
certain points in time. We find that there are four natural generalizations of Feedback Edge
Set, all of which turn out to be NP-hard. We also study the tractability of these problems
with respect to several parameters (solution size, lifetime, and number of graph vertices, among
others) and obtain some parameterized hardness but also fixed-parameter tractability results.

1 Introduction

A temporal graph G = (V, E , τ) has a fixed vertex set V and each time-edge in E has a discrete time-
label t ∈ {1, 2, . . . , τ}, where τ denotes the lifetime of the temporal graph G. A temporal cycle in
a temporal graph is a cycle of time-edges with increasing time-labels. We study the computational
complexity of searching for small feedback edge sets, i.e., edge sets whose removal from the temporal
graph destroys all temporal cycles. We distinguish between the following two variants of feedback
edge sets.

1. Temporal feedback edge sets, which consist of time-edges, that is, connections between two
specific vertices at a specific point in time.

2. Temporal feedback connection sets, which consist of vertex pairs {v,w} causing that all time-
edges between v and w will be removed.

Defining feedback edge set problems in temporal graphs is not straight-forward because for
temporal graphs the notions of paths and cycles are more involved than for static graphs. First, we
consider two different, established models of temporal paths. Temporal paths are time-respecting
paths in a temporal graph. Strict temporal paths have strictly increasing time-labels on consecutive
time-edges. Non-strict temporal paths have non-decreasing time-labels on consecutive time-edges.

We focus on finding temporal feedback edge sets and temporal feedback connection sets (formal-
ized in Section 2) of small cardinality in unweighted temporal graphs, each time using both the strict
and non-strict temporal cycle model. We call the corresponding problems (Strict) Temporal
Feedback Edge Set and (Strict) Temporal Feedback Connection Set, respectively.

∗An extended abstract of this work appeared in the proceedings of WG 2020 [13]. This version provides full proof
details and corrects some errors. Supported by the DFG, project MATE (NI 369/17).
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(Strict) Temporal Feedback Edge Set ((S)TFES)

Input: A temporal graph G = (V, E , τ) and k ∈ N.
Question: Is there a (strict) temporal feedback edge set E ′ ⊆ E of G with |E ′| ≤ k?

(Strict) Temporal Feedback Connection Set ((S)TFCS)

Input: A temporal graph G = (V, E , τ) and k ∈ N.

Question: Is there a (strict) temporal feedback connection set C ′ ⊆
(

V
2

)

of G with |C ′| ≤ k?

Related Work. In static connected graphs, removing a minimum-cardinality feedback edge set
results in a spanning tree. This can be done in linear time via depth-first or breadth-first search.
Thus, it is natural to compare temporal feedback edge sets to the temporal analogue of a spanning
tree. This analogue is known as the minimum temporally connected (sub)graph, which is a graph
containing a time-respecting path from each vertex to every other vertex. The concept was first
introduced by Kempe et al. [17], and Axiotis and Fotakis [4] showed that in an n-vertex graph such a
minimum temporally connected subgraph can have Ω(n2) edges while Casteigts et al. [9] showed that
complete temporal graphs admit sparse temporally connected subgraphs. Additionally, Akrida et al.
[2] and Axiotis and Fotakis [4] proved that computing a minimum temporally connected subgraph
is APX-hard. Considering weighted temporal graphs, there is also (partially empirical) work on
computing minimum spanning trees, mostly focusing on polynomial-time approximability [16].

While feedback edge sets in temporal graphs seemingly have not been studied before, Agrawal
et al. [1] investigated the related problem α−Simultaneous Feedback Edge Set, where the
edge set of a graph is partitioned into α color classes and one wants to find a set of at most k edges
intersecting all monochromatic cycles. They show that this is NP-hard for α ≥ 3 colors and give a
2O(kα) poly(n)-time algorithm.

Another related problem is finding s-t-separators in temporal graphs; this was studied by
Berman [6], Kempe et al. [17], and Zschoche et al. [23]. Already here some differences were found
between the strict and the non-strict setting, a distinction that also matters for our results.

Our Contributions. Based on a polynomial-time many-one reduction from 3-SAT, we show
NP-hardness for all four problem variants. The properties of the corresponding construction yield
more insights concerning special cases. More specifically, the constructed graph uses τ = 8 distinct
time-labels for the strict variants and τ = 3 labels for the non-strict variants. Similarly, we observe
that our constructed graph has at most one time-edge between any pair of vertices (i.e., is simple),
implying that the problems remain NP-hard when restricted to simple temporal graphs. Assuming
the Exponential Time Hypothesis, we can additionally prove that there is no subexponential-time
algorithm solving (S)TFES or (S)TFCS. Moreover, we show that all four problem variants are
W[1]-hard when parameterized by the solution size k, using a parameterized reduction from the
W[1]-hard problem Multicut in DAGs [18].

On the positive side, based on a simple search tree, we first observe that all problem vari-
ants are fixed-parameter tractable with respect to the combined parameter k + L, where L is the
maximum length of a minimal temporal cycle. For the strict problem variants, this also implies
fixed-parameter tractability for the combined parameter τ + k. Our main algorithmic result is to
prove fixed-parameter tractability for (S)TFES with respect to the number of vertices |V |. (For
(S)TFCS, the corresponding result is straightforward as there are 1

2 (|V |2 − |V |) vertex pairs to
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Table 1: Overview of our results for (Strict) Temporal Feedback Edge Set (marked with *)
and (Strict) Temporal Feedback Connection Set (marked with **). Unmarked results
apply to both variants. The parameter k denotes the solution size, τ the lifetime of the temporal
graph, L the maximum length of a minimal temporal cycle, and tw↓ resp. td↓ the treewidth resp.
treedepth of the underlying graph.

Param. Complexity

Strict variant Non-strict variant

none NP-hard [Thm. 10*/Cor. 11**] NP-hard [Cor. 12]

k W[1]-hard [Thm. 14] W[1]-hard [Thm. 14]

τ τ ≥ 8: NP-h. [Thm. 10*/Cor. 11**] τ ≥ 3: NP-h. [Cor. 12]

k + L O(Lk · |E|2) [Obs. 6] O(Lk · |E|2 log|E|) [Obs. 6]

k + τ O(τk · |E|2) [Cor. 7] open

k + td↓ 2O(td↓ ·k) · |E|2 [Cor. 8] 2O(td↓ ·k) · |E|2 log|E| [Cor. 8]

|V | O(2|V |3 |V |4τ)* [Thm. 17*]

O(2
1

2
(|V |2−|V |) · |E|2)** [Obs. 9**]

O(2|V |3+|V |2 |V |7τ)* [Thm. 17*]

O(2
1

2
(|V |2−|V |) · |E|2 log|E|)** [Obs. 9**]

tw↓ + τ FPT [Thm. 23] FPT [Thm. 23]

consider.) Finally, studying the combined parameter τ plus treewidth of the underlying graph, we
show fixed-parameter tractability based on an MSO formulation.

Our results are summarized in Table 1. Notable distinctions between the different settings
include the combined parameter k+τ where the non-strict case remains open, and the parameter |V |
where the proof for (S)TFES is much more involved than for (S)TFCS.

2 Preliminaries and Basic Observations

We assume familiarity with standard notions from graph theory and (parameterized) complexity
theory. We denote the set of positive integers with N. For a ∈ N, we set [a] := {1, . . . , a}. The
notation

(

A
2

)

refers to all size-2 subsets of a set A. We use the following definition of temporal
graphs in which the vertex set does not change with time and each time-edge has a discrete time-
label [14, 15, 19].

Definition 1 (Temporal Graph, Underlying Graph). An (undirected) temporal graph G = (V, E , τ)
is an ordered triple consisting of a set V of vertices, a set E ⊆

(

V
2

)

× [τ ] of (undirected) time-edges,
and a lifetime τ ∈ N.

The underlying graph G↓ is the static graph obtained by removing all time-labels from G and
keeping only one edge from every multi-edge. We call a temporal graph simple if each vertex pair
is connected by at most one time-edge.

Let G = (V, E , τ) be a temporal graph. For i ∈ [τ ], let Ei(G) := {{v,w} | ({v,w}, i) ∈ E} be the
set of edges with time-label i. We call the static graph Gi(G) = (V,Ei(G)) layer i of G. For t ∈ [τ ],
we denote the temporal subgraph consisting of the first t layers of G by G[t](G) := (V, {(e, i) | i ∈
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[t] ∧ e ∈ Ei(G)}, t). We omit the function parameter G if it is clear from the context. For some
E ′ ⊆

(

V
2

)

× [τ ], we denote G − E ′ := (V, E \ E ′, τ).

Definition 2 (Temporal Walk, Path, and Cycle). Given a temporal graph G = (V, E , τ), a temporal
walk of length ℓ in G is a sequence P = (e1, e2, . . . , eℓ) of time-edges ei = ({vi, vi+1}, ti) ∈ E where
ti ≤ ti+1 for all i ∈ [ℓ− 1]. If v1, . . . , vℓ+1 are pairwise distinct, then P is called a temporal path. If
v1, . . . , vℓ are pairwise distinct, vℓ+1 = v1, and ℓ ≥ 3, then P is called a temporal cycle. A temporal
walk, path, or cycle is called strict if ti < ti+1 for all i ∈ [ℓ− 1].

The definitions of (Strict) Temporal Feedback Edge Set and (Strict) Temporal
Feedback Connection Set (see Section 1) are based on the following two sets (problem and set
names are identical).

Definition 3 ((Strict) Temporal Feedback Edge Set). Let G = (V, E , τ) be a temporal graph. A
time-edge set E ′ ⊆ E is called a (strict) temporal feedback edge set of G if G′ = (V, E \ E ′, τ) does
not contain a (strict) temporal cycle.

Definition 4 ((Strict) Temporal Feedback Connection Set). Let G = (V, E , τ) be a temporal graph
with underlying graph G↓ = (V,E↓). An edge set C ′ ⊆ E↓ is a (strict) temporal feedback connection
set of G if G′ = (V, E ′, τ) with E ′ = {({v, u}, t) ∈ E | {v, u} /∈ C ′} does not contain a (strict)
temporal cycle.

The elements in a feedback connection set are known as underlying edges (edges of G↓).

Simple Observations. For any given starting time and source vertex, we can compute shortest
temporal paths to all other vertices in O(|E| log|E|) time [21], respectively O(|E|) time for strict
temporal paths [23, Prop. 3.7]. Thus, by searching for each time-edge ({v,w}, t) for a shortest
temporal path from w to v (or vice versa) which starts at time t and avoids the edge {v,w}, we
can record the following observation.

Observation 5. In O(|E|2 log|E|) time, we can find a shortest temporal cycle or confirm that none
exists. For the strict case O(|E|2) time suffices.

Given a shortest temporal cycle of length L, any temporal feedback edge or connection set must
contain an edge or connection used by that cycle. By repeatedly searching for a shortest temporal
cycle and then branching over all of its edges or connections, we obtain the following (again the
log-factor is only required in the non-strict case).

Observation 6. Let G = (V, E , τ) be a temporal graph where each temporal cycle has length at
most L ∈ N. Then, (S)TFES and (S)TFCS can be solved in O(Lk · |E|2 log|E|) time. For the strict
cases O(Lk · |E|2) time suffices.

Proof. We can construct a simple search tree based on the fact that at least one edge from each
cycle has to be in the solution. According to Observation 5, we can confirm that G is cycle-free
or find some shortest cycle C in O(|E|2 · log|E|) time (resp. O(|E|2) in the strict case). If we find
a cycle C, then we branch over all of its |C| ≤ L time-edges and recursively solve the instance I ′

remaining after removing this time-edge (underlying edge for (S)TFCS) and lowering k by one.
Clearly, removing any time-edge cannot create a new temporal cycle and, thus, L is also an upper-
bound for the length of a minimal temporal cycle in I ′. The size of the resulting search tree is
upper-bounded by O(Lk).
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Clearly, a strict temporal cycle cannot be longer than the lifetime τ . Thus, Observation 6
immediately gives the following result.

Corollary 7. STFES and STFCS can be solved in O(τk · |E|2) time.

Alternatively, we can also upper-bound L in terms of the length of any cycle of the underlying
graph G↓, which in turn can be upper-bounded by 2O(td↓ ) [20, Prop. 6.2], where td↓ is the treedepth
of the underlying graph.

Corollary 8. Let G be a temporal graph and td↓ be the treedepth of G↓. Then, (S)TFES and
(S)TFCS can be solved in 2O(td↓ ·k) · |E|2 log|E| time. For the strict cases 2O(td↓ ·k) · |E|2 time suffices.

In contrast to static graphs, |V | is to be considered as a useful parameter for temporal graphs
because the maximum number of time-edges |E| can be arbitrarily much larger than |V |. However,
the number of underlying edges is at most 1

2(|V |2− |V |) which yields the following fixed-parameter
tractability result for (S)TFCS.

Observation 9. TFCS can be solved in O(2
1

2
(|V |2−|V |) · |E|2 log|E|) time and STFCS can be solved

in O(2
1

2
(|V |2−|V |) · |E|2) time.

Proof. Let G be a temporal graph with underlying graph G↓ = (V,E↓). As G↓ is a static graph, we

have |E↓| ≤
1
2 (|V |2 − |V |). Thus, there are 2|E↓| ≤ 2

1

2
(|V |2−|V |) possible feedback connection sets,

each of which can be tested in O(|E|2 log|E|) time resp. O(|E|2) time (Observation 5).

3 Computational Hardness Results

We now show that all four problem variants, (S)TFES and (S)TFCS, are NP-hard on simple
temporal graphs with constant lifetime. The proofs work by reducing from the classical 3-SAT
problem.

Theorem 10. STFES is NP-hard for simple temporal graphs with τ = 8.

Proof. We show NP-hardness via a polynomial-time many-one reduction from 3-SAT. For a Boolean
formula Φ in conjunctive normal form (CNF) with at most three variables per clause, 3-SAT asks
if there is a satisfying truth assignment for Φ. Let Φ be such a formula with variables x1, x2, . . . , xn
and clauses c1, c2, . . . , cm of the form cj = (ℓ1j ∨ ℓ2j ∨ ℓ3j ). We construct an STFES instance with
temporal graph G(Φ) and k = n + 2m as follows.

For each variable xi, we introduce a variable gadget (see Figure 1) with vertices vi, vTi , and
vFi and time-edges eTi := ({vi, v

T
i }, 2), eFi := ({vi, v

F
i }, 3), and ehi := ({vTi , v

F
i }, 1). As these three

edges form the temporal cycle (ehi , e
T
i , e

F
i ), any solution for STFES must contain at least one of

them. For each clause cj , we introduce a clause gadget with four vertices, wj , w1
j , w2

j , and w3
j ,

and the edges fa
j := ({w1

j , w
2
j}, 1), f b

j := ({w2
j , w

3
j }, 2), f1

j := ({cj , w
1
j}, 7), f2

j := ({cj , w
2
j}, 6),

f3
j := ({cj , w

3
j}, 5) (see Figure 1). The clause gadget contains three cycles which overlap in such a

way that any solution has to contain at least two out of its five edges.
We connect clauses to variables as follows (see Figure 2 for an example). Let cj = (ℓ1j ∨ ℓ2j ∨

ℓ3j) be a clause of Φ. If ℓ1j = xi, then we add the edge ({w1
j , v

T
i }, 4) and, if ℓ1j = ¬xi, we add

({w1
j , x

F
i }, 4) (edges for ℓ2j and ℓ3j analogously). Further, we connect a new vertex s to all variable

5



vi

vTi vFi

eTi , 2 eFi , 3

ehi , 1

w1
j w2

j w3
j

wj

f1
j , 7

f2
j , 6

f3
j , 5

fa
j , 1 f b

j , 2

Figure 1: Variable gadget (left) and clause gadget (right) used in the proof of Theorem 10. Written
next to each edge are its name and time-label.

s

x1

T F

1

2 3

x2

T F

1

2 3

x3

T F

1

2 3

x4

T F

1

2 3

7

6

5

1 2

4

4 4

(x1 ∨ ¬x2 ∨ x3)

7

6

5

1 2

4 4 4

1

8

(¬x2 ∨ ¬x3 ∨ x4)

Figure 2: Example: Reduction from 3-SAT to STFES/STFCS.

gadgets by ({s, vi}, 1) for all i ∈ [n] and to all clause gadgets by ({s,wj}, 8) for all j ∈ [m].
This creates three additional cycles per clause, each starting and ending in s. More precisely,
if xi (¬xi is handled analogously) is the z-th literal of clause cj , then G(Φ) contains the cycle
Cz
ij = (({s, vi}, 1), ({vi, v

T
i }, 2, ({v

T
i , w

z
j }, 4), ({wz

j , wj}, 8 − z), ({wj , s}, 8)).
It is easy to see that G(Φ) can be computed in polynomial time. The general idea of this

reduction is to use the solution size constraint to ensure that exactly one edge from each variable
gadget and exactly two edges from each clause gadget are taken. Thus, out of the three cycles
starting in s and going through the clause gadget of cj , only two can be disconnected by picking
two edges from {f1

j , f
2
j , f

3
j }. The remaining cycle has to be disconnected inside its variable gadget

by picking either eTi or eFi which “selects” the variable that will satisfy the clause and gives us
its truth assignment. Now we show that (G(Φ), k) is a yes-instance of STFES if and only if Φ is
satisfiable.

(⇒) : Let E ′ be a solution to the constructed STFES instance. Due to the size constraint
k ≤ n + 2m and the cycles existing inside the gadgets, E ′ contains exactly one edge from each
variable gadget and two edges from each clause gadget. Therefore, E ′ cannot contain any edges
adjacent to s or edges connecting variable and clause gadgets. We obtain the solution for the
3-SAT instance by setting xi to true if eTi ∈ E ′ and to false if eFi ∈ E ′ or ehi ∈ E ′. Assume towards
contradiction that there is a clause cj = (ℓ1j ∨ ℓ2j ∨ ℓ3j) which is not satisfied. Then, in all three
variable gadgets connected to wj , the edge needed to go from s to the corresponding literal vertex
of cj is present in G(Φ)−E ′. As E ′ contains only two of the edges from the clause gadget, the path

6



of one of the three literals can be extended to the vertex wj and from there back to s, contradicting
that G(Φ) − E ′ is cycle-free.

(⇐) : For the reverse direction, suppose we have a satisfying truth assignment for Φ. We obtain
a solution E ′ = EVar ∪ ECl for the STFES instance (G(Φ) = (V, E , τ = 8), k = n + 2m) as follows.
For the variable gadgets, we use the variable assignment to add the feedback edges

EVar = {eTi | i ∈ [n], xi = true} ∪ {eFi | i ∈ [n], xi = false}.

For each clause cj = (ℓ1j ∨ ℓ2j ∨ ℓ3j), let zj ∈ [3] be the number of one of the literals satisfying the

clause, i.e., ℓ
zj
j = true. We add the edges between wj and the other two literal vertices to the

feedback edge set:
ECl = {f z

j | j ∈ [m], z ∈ [3], z 6= zj}.

Note that this breaks all cycles inside the variable and clause gadgets and that |E ′| = |EVar|+ |ECl| =
n + 2m. Cycles going through multiple gadgets but not starting in s are impossible as they would
use at least two edges with time-label 4. It remains to show that G −E ′ does not contain any cycle
starting and ending in s. Assume towards contradiction that there is such a cycle going through the
variable gadget of xi and the clause gadget of cj. Further, assume that xi was set to true (the other
case is handled analogously) and that, therefore, ({vi, v

F
i }, 3) ∈ E \ E ′. Then, the cycle begins with

({s, vi}, 1), ({vi, v
F
i }, 3), ({vFi , w

y
j }, 4) for some y ∈ [3]. Note that the edges ehi , fa

j , and f b
j cannot be

used due to the time-labels. By construction of G(Φ), we know that if ({vFi , w
y
j }, 4) exists, then ℓyj is

one of the literals satisfying the clause if xi = false. Since we assumed that xi = true, it holds that
y 6= zj and, thus, f y

j ∈ ECl. It follows that there is no edge which can be appended to the temporal
path and, in particular, no possibility of reaching s, thus contradicting the assumption.

The temporal graph constructed in the proof for Theorem 10 does not contain any pair of
vertices which is connected by more than one time-edge. Hence, each underlying edge corresponds
to a single time-edge and thus the reduction implies the following corollary.

Corollary 11. STFCS is NP-hard even for simple temporal graphs with τ = 8.

A very similar reduction can also be used for the following.

Corollary 12. TFES and TFCS are both NP-hard even for simple temporal graphs with τ ≥ 3.

Proof sketch. The changes that need to be made to the reduction described in the proof of Theo-
rem 10 are shown in Figure 3. Here, we have to subdivide the edges between variable and clause
gadgets in order to avoid cycles which go through multiple gadgets but not through s. In turn,
only three different time-labels are needed to create the required cycles.

We can also observe that the strict problem variants are NP-hard even if all edges are present
at all times. This problem is essentially equivalent to selecting a set of edges of the underlying
graph that intersects all cycles of length at most τ , which is known to be NP-hard [22, Thm. 1].

Observation 13. STFES and STFCS are NP-hard even on temporal graphs where all edges are
present at all times, even with τ = 3, planar underlying graph G↓, and ∆(G↓) = 7.
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s

x1

T F

1

2 2

x2

T F

1

2 2

x3

T F

1

2 2

x4

T F

1

2 2

3

3

3

1 1

2

3

2

3

2

3

(x1 ∨ ¬x2 ∨ x3)

3

3

3

1 1

2 2 2

3 3 3

1

3

(¬x2 ∨ ¬x3 ∨ x4)

Figure 3: Example: Reduction from 3-SAT to TFES/TFCS.

Proof. Let G = (V, E , 3) be a temporal graph with three layers E1 = E2 = E3. Then an edge set
C ′ ⊆ E↓ is a strict temporal feedback connection set if and only if it intersects all triangles in G↓.

Similarly, it is easy to see that a strict temporal feedback edge set E ′ ⊆ E must contain at least
three time-edges from every triangle in G↓ and exactly three time-edges from each triangle suffice.

Since it is NP-hard to determine whether there exists a set of k edges intersecting all triangles
in a planar graph with maximum degree 7 [8, Thm. 2.1], the claim follows.

We next show that our problems are W[1]-hard when parameterized by the solution size k with
a parameterized reduction from Multicut in DAGs [18]. The idea here is that we can simulate
a DAG D by an undirected temporal graph by first subdividing all edges of D and then assigning
time-labels according to a topological ordering. This ensures that each path in D corresponds to a
path in the resulting temporal graph and vice versa. By adding a reverse edge from t to s for each
terminal pair (s, t) of the Multicut instance, each s-t-path in D corresponds to a temporal cycle
in the temporal graph and vice versa.

Theorem 14. (S)TFES and (S)TFCS, parameterized by the solution size k, are W[1]-hard.

We prove W[1]-hardness with a parameterized reduction from Multicut in DAGs parameter-
ized by the solution size.

Multicut in DAGs

Input: A DAG D = (V,A), a set of terminal pairs T = {(si, ti) | i ∈ [r] and si, ti ∈ V },
and an integer k.

Question: Is there a cut-set Z ⊆ V of at most k nonterminal vertices of G such that for all
i ∈ [r] the terminal ti is not reachable from si in G− Z?

Multicut in DAGs was shown to be W[1]-hard when parameterized by k by Kratsch et al.
[18, Thm. 1.2] who also provided the following lemma which will simplify our proof by further
restricting the input instance.

8



a b :=
t t + 2

a b

v1ab

v2ab

...

vk+1
ab

w1
ab

w2
ab

...

wk+1
ab

t

t

t

t + 1

t + 1

t + 1

t + 2

t + 2

t + 2

Figure 4: Heavy time-edge h(a, b, t).

Lemma 15 (Kratsch et al. [18, Lemma 2.1]). Given a Multicut in DAGs instance (D,T , k)
with D = (V,A), one can compute in polynomial time an equivalent instance (D′,T ′, k′) with
D′ = (V ′, A′) such that

1. |T | = |T ′| and k = k′;

2. T ′ = {(s′i, t
′
i) | i ∈ [r]} and all terminals s′i and t′i are pairwise distinct; and

3. for each v ∈ V and i ∈ [r] we have (v, s′i) /∈ A′ and (t′i, v) /∈ A′.

We will from now on assume that we have an instance with these properties. The goal of our
reduction will be to create one temporal cycle for each terminal pair. Since there is a temporal
path from si to ti (the pair can be ignored otherwise), we can create a cycle by adding a back-edge
from ti to si. To preserve the direction of the arcs in the (undirected) temporal graph, we will
subdivide each arc into small paths with ascending time-labels. As Multicut in DAGs asks for a
vertex set, we also need to subdivide each nonterminal vertex v into two new vertices vin and vout
which are connected by one edge. Then, the vertex v is in the cut-set of the original problem if the
edge between vin and vout is in the solution edge set of the STFES instance.

Before stating our reduction, we introduce two auxiliary concepts. First, when we want to
exclude edges from (S)TFES/(S)TFCS solutions, we will employ a gadget we call heavy time-edge
which connects two vertices using k + 1 parallel paths.

Definition 16 (Heavy time-edge). Let I = (G = (V, E , τ), k) be an instance of (S)TFES or
(S)TFCS. For a, b ∈ V and t ≤ τ −2, a heavy time-edge of G is a subgraph h(a, b, t) := (Vh, Eh, τh =
t + 2) connecting vertex a to vertex b with

Vh = {a, b} ∪ {viab, w
i
ab | i ∈ [k + 1]} and

Eh = {({a, viab}, t), ({v
i
ab, w

i
ab}, t + 1), ({wi

ab, b}, t + 2) | i ∈ [k + 1]}.

The construction is shown in Figure 4. Let eh := h(a, b, t) be a heavy time-edge. Due to the
time-labels, the gadget only connects a to b (and not b to a) which we will use to model (directed)
arcs with (undirected) time-edges. For (S)TFES/(S)TFCS solutions, it is easy to see that if there

9



a
3

b
2

c
1

d
7

e
4

f
5

g
8

h
9

j
6

c b a e f j d g h

Figure 5: A DAG with values for π(v) (derived from an acyclic ordering) for each vertex v (top)
and with the vertices aligned on a line according to π (bottom).

is a temporal path from b to a, then the k + 1 cycles going through eh cannot be disconnected
by removing edges inside the gadget. Thus, without loss of generality we can assume that a given
solution contains no edges from eh. We also note that, for both temporal path models (i.e., strict
and non-strict), it is possible to design a smaller gadget with identical properties, but we opted to
use one which works for both models simultaneously.

Second, in order to assign time-labels while preserving all paths of the input graph D, we will
use an acyclic ordering (also known as topological ordering) of D. For a directed graph D = (V,A),
an acyclic ordering < is a linear ordering of the vertices with the property (v,w) ∈ A ⇒ v < w. In
other words, if we place the vertices on a line in the order given by <, then all arcs point in one
direction (see Figure 5 for an example). If D is a DAG, then such an ordering exists and can be
computed in linear time [5, Thm. 4.2.1]. For convenience, we represent this ordering as a function
π : V → N which maps each vertex to its position in the ordering. We now have all the ingredients
to prove the theorem.

Proof of Theorem 14. Let I = (D,T , k) be an instance of Multicut in DAGs with terminal
vertices VT := {si, ti | (si, ti) ∈ T }. We construct an instance I ′ = (G, k′ = k) of (S)TFES as
follows.

1. We compute an acyclic ordering of the vertices V := V (D) and store it as a function π : V → N

(see Figure 5). We use π to transform D into an equivalent temporal graph G1 = (V ′, E , τ =
4|V |) by replacing each arc (v,w) ∈ A with the heavy time-edge evw := h(v,w, 4π(v) + 1). It
is easy to verify that, for two vertices s, t ∈ V , the graph D contains a path from vertex s to
vertex t if and only if G contains a temporal path from s to t. Note that starting each heavy
time-edge with time-label 4π(v) + 1 leaves layer 4π(v) empty which we will use in the next
step.

2. In G1, we replace each nonterminal vertex v ∈ V \ VT with two new vertices vin and vout

10
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Figure 6: Example: Reduction from Multicut in DAGs with input digraph D and one terminal
pair (a, c) to TFES. Double lines represent heavy time-edges (Definition 16).

connected by time-edge ev = ({vin, vout}, 4π(v)) and update the edges adjacent to v as follows.
For each (incoming) edge of the form euv := ({u, v}, t) with t < 4π(v), replace euv with
({u, vin}, t). For each (outgoing) edge of the form evw := ({v,w}, 4π(v) + 1), replace evw with
({vout, w}, 4π(v) + 1). Let G2 denote the resulting graph. Clearly, for two vertices s, t ∈ V ,
removing v in G1 disconnects all (s, t)-paths if and only if removing ev in G2 disconnects all
(s, t)-paths.

3. We obtain G3 = G by adding a back-edge h(ti, si, τbe) with τbe = 4|V + 1| for each terminal
pair (si, ti). Since there is a temporal path from si to ti, this creates at least one cycle for
each terminal pair.

Figure 6 shows a small example. It is easy to see that the construction can be done in polynomial
time. Now we show that I = (D,T , k) is a yes-instance of Multicut in DAGs if and only if
I ′ = (G, k′ = k) is a yes-instance of (S)TFES.

(⇒) : Let Z be a solution of I. We claim that E ′ = {({vin, vout}, 4π(v)) | v ∈ Z} is a solution
of I ′. We first show that, for any terminal pair (si, ti), the graph G − E ′ contains no temporal
path from si to ti. For G2, this is easily verified as D − Z contains no (si, ti)-path. In G = G3,
this claim holds if no temporal path from si to ti contains a back-edge etjsj = h(tj, sj , τbe) added
in step 3. Due to the starting time-label of the back-edges, no temporal path can contain more
than one back-edge, and if it does contain one back-edge, then this back-edge must be at its end.
Clearly, the temporal path cannot end at both ti and sj unless ti = sj, which we excluded by
applying Lemma 15. Now, assume towards contradiction that G − E ′ contains a cycle C. Since G2

was cycle-free, C must use some back edge etisi introduced in step 3 and, as reasoned above, this
back edge must be the last edge of C. However, there is no temporal path from si to ti in G − E ′

and, thus, C cannot be a temporal cycle.
(⇐) : Let E ′ be a solution of I ′, i.e., G − E ′ contains no cycles. Recall that VT := {si, ti |

(si, ti) ∈ T } is the set of terminal vertices of I. As observed above, we may assume that E ′ does
not contain any edges from heavy time-edges. Thus we have E ′ ⊆ {ev | v ∈ V \ VT } and define
the solution for I as Z := {v | ev ∈ E ′}. Assume towards a contradiction that D − Z contains
an (si, ti)-path for some terminal pair (si, ti). This path induces a temporal path from si to ti in
G −E ′ which we can extend back to si by appending the back edge etisi to obtain a cycle in G − E ′

and, thus, a contradiction.
For both directions, we have |Z| = |E ′| ≤ k = k′ meeting the requirements for the solution size.
As the constructed temporal graph G contains no pair of vertices connected by more than one

time-edge, we can easily transform a minimal feedback edge set of G into a minimal feedback
connection set. Thus, the arguments presented in this proof also hold for (S)TFCS.
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4 Fixed-Parameter Tractability Results

After having shown computational hardness for the single parameters solution size k and life-
time τ in Section 3, we now consider larger and combined parameters, and present fixed-parameter
tractability results.

4.1 Parameterization by Number of Vertices

As shown in Observation 9, (S)TFCS is trivially fixed-parameter tractable with respect to the
number of vertices |V |. For (S)TFES, however, the same result is much more difficult to show
as the size of the search space is only upper-bounded by 2τ(|V |2−|V |). Here, the dependence on τ
prevents us from using the (brute-force) approach that worked for (S)TFCS.

Theorem 17. STFES can be solved in O(2|V |3 |V |4τ) time and TFES in O(2|V |3+|V |2 |V |7τ) time,
both requiring O(2|V |3) space.

We prove Theorem 17 using a dynamic program which computes the minimum number of time-
edges which have to be removed to achieve a specified connectivity at a specified point in time.
The rough idea is that we can efficiently determine which edges need to be removed from layer t
if we know which vertices can reach which other vertices until time t− 1 and time t, respectively.
We would then like to exclude temporal cycles by simply requiring that every vertex is unreachable
from itself until time τ . However, the situation is slightly more complicated as a (even non-trivial)
temporal walk from a vertex to itself might simply “backtrack” along itself, and thus not constitute
a temporal cycle. We will handle this complication by introducing side-trip-free temporal walks,
which are essentially forbidden from backtracking along previously used edges.

Let P be a walk (or temporal walk) with vertex sequence v1, . . . , vℓ+1. We call P side trip free
if vi 6= vi+2 for all 1 ≤ i ≤ ℓ − 1. We further denote the second vertex of P by σ(P ) := v2 and
the penultimate vertex by ρ(P ) := vℓ. In the special case of P being the trivial walk, we define
ρ(P ) := v1.

The motivation behind side-trip-free temporal walks is due to the following observation.

Observation 18. A temporal graph contains a (strict) temporal cycle if and only if it contains a
(strict) non-trivial side-trip-free temporal walk from a vertex to itself.

Proof. One implication is immediate. For the other direction, assume P to be a (strict) non-trivial
side-trip-free temporal walk from a vertex v to itself. Let v1, . . . , vℓ+1 be the vertex sequence of P ,
where v1 = v = vℓ+1. Let i be the maximal index such that there is j > i with vi = vj. By
also picking j minimally, we may assume that vi, vi+1, . . . , vj−1 are pairwise distinct. Thus, the
corresponding subwalk of P is a temporal cycle.

The first index of our dynamic programming table will be a connectivity table A ∈ {0, 1}|V |×|V |×|V |

which is itself indexed by triples of vertices. We say that a temporal graph G adheres to A if
Auvw = 0 implies that G contains no side-trip-free temporal walk P from u to w with ρ(P ) = v.
We say that G fully adheres to A if this implication is bidirectional, i.e., if Auvw = 1 also implies
that there is such a side-trip-free temporal walk.

Next, we define two functions, srd(G,B,A) (strict required deletions) and nrd(G,B,A) (non-
strict required deletions), which return the solution to the following subproblem: Given connectivity
tables B (before) and A (after) and a graph G, what is the minimum number of edge deletions
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Figure 7: Illustration of the subproblem solved by srd(G,B,A). If we have Auvw = 0 (i.e., we want
no side-trip-free temporal path P from u to w with ρ(P ) = v to exist at time t), and if we further
have Buxv = 1 (i.e., there is a side-trip-free temporal path P ′ from u to v with ρ(P ′) = x 6= w as
indicated by the dotted line), then the time-edge ({v,w}, t) has to be removed from the graph.

in G to ensure that for any temporal graph G with vertex set V (G) that fully adheres to B, the
temporal graph obtained by appending the layer G to G adheres to A? (Of course, the difference
between srd and nrd is whether connectivity is evaluated for strict or non-strict temporal walks.)
Figure 7 illustrates this problem for the strict case.

Lemma 19. Let G = (V,E) be a static graph with |V | = n and let A,B ∈ {0, 1}n×n×n be two
connectivity tables. Then

srd(G,B,A) =

{

∞ if ∃u, v, w : Buvw > Auvw

|{{v,w} ∈ E | ∃u : Auvw = 0 ∧ ∃x 6= w : Buxv = 1}| otherwise

Proof. Let G be any temporal graph fully adhering to connectivity B and G′ obtained from ap-
pending G to G (say as layer τ).

Clearly, deleting edges from G = G′
τ cannot destroy any temporal walks that exist in G. Thus

if Buvw = 1 but Auvw = 0 for some u, v, w, then no number of deletions suffices. So suppose now
Buvw ≤ Auvw for all u, v, w.

Let G′′ be obtained from G′ by deleting from G′
τ the edges in

E′ := {{v,w} ∈ E | ∃u : Auvw = 0 ∧ ∃x 6= w : Buxv = 1}.

To show that G′′ adheres to A, it is sufficient to show for each entry Auvw = 0 that G′′ contains no
side-trip-free strict temporal walk P from u to w with ρ(P ) = v which arrives exactly at time τ
(because Auvw = 0 implies Buvw = 0). If such a walk P exists, then it must contain the edge {v,w}
at time τ and further it must contain a side-trip-free strict temporal walk P ′ ⊆ P from u to v with
ρ(P ′) 6= w. (If we had ρ(P ′) = w, then P would not be side trip free.) But then, {v,w} ∈ E′ by
definition of E′. This proves srd(G,B,A) ≤ |E′|.

To see that srd(G,B,A) ≥ |E′|, let Ẽ be any subset of E(G) and G̃ be obtained from G′ by
deleting the edges in Ẽ from layer τ . If G̃ adheres to A, then we claim that Ẽ ⊇ E′. Suppose
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not, then there are u, v, w, x with x 6= w, Auvw = 0, Buxv = 1, and {v,w} ∈ E(G) \ Ẽ. Since G
fully adheres to B, there is in G a side-trip-free strict temporal walk Q from u to v with ρ(v) = x.
Appending the time-edge ({v,w}, τ) to Q then shows that G̃ does not adhere to B.

Lemma 19 shows that srd can be computed in O(|V |4) time by iterating over all 4-vertex
tuples (u, v, w, x).

In the non-strict case, a temporal path can successively use multiple edges from G. Thus,
it is not possible to consider each entry Auvw = 0 separately (a single edge might be part of
multiple unwanted temporal walks). Instead, we have to find an optimal edge-cut disconnecting all
“problematic” pairs in G.

Lemma 20. Let G = (V,E) be a static graph with |V | = n and let A,B ∈ {0, 1}n×n be two
connectivity tables.

If there exist u, v, w such that Buvw > Auvw, then nrd(G,B,A) = ∞. Otherwise, nrd(G,B,A) =
|E′| where E′ ⊆ E(G) is a minimum-size set which intersects for all u, v, w, s, x with Auvw = 0 and
Buxs = 1, every non-trivial side-trip-free s-w walk P with ρ(P ) = v and σ(P ) 6= x.

Proof. Let G be any temporal graph fully adhering to connectivity B and G′ obtained from ap-
pending G to G (say as layer τ).

As in the proof of Lemma 19, if there are u, v, w with Buvw = 1 and Auvw = 0, then (and only
then) no amount of edge deletions suffices. So suppose now otherwise.

Let E′ ⊆ E(G) be as stated above and G′′ be obtained from G′ by deleting the edges in E′

from G′
τ . Suppose for contradiction that G′′ does not adhere to A, i.e., there are u, v, w with Auvw = 0

but a side-trip-free temporal walk P from u to w with ρ(P ) = v exists in G′′. Since Buvw = 0,
P must arrive at time τ . Let s be the last vertex P reaches before time τ and let P ′, P ′′ be the
temporal sub-walks ending resp. starting at s. Set x := ρ(P ′), then clearly Buxs = 1 and σ(P ′′) 6= x.
Furthermore ρ(P ′′) = ρ(P ) = v. Together, this implies that P ′′ intersects E′ by definition of E′.
This shows nrd(G,B,A) ≤ |E′|.

To see that nrd(G,B,A) ≥ |E′|, let Ẽ be any subset of E(G) and G̃ be obtained from G′

by deleting the edges in Ẽ from layer τ . If G̃ adheres to A, then we claim that Ẽ intersects
for all u, v, w, s, x with Auvw = 0 and Buxs = 1, every non-trivial side-trip-free s-w walk P with
ρ(P ) = v and σ(P ) 6= x. (Of course, this implies |Ẽ| ≥ |E′|.) So suppose that this is not the
case. Since G fully adheres to B, there is in G a side-trip-free temporal walk Q from u to s with
ρ(Q) = x. Concatenating Q and P then produces a side-trip-free temporal walk Q′ from u to w
with ρ(Q′) = ρ(P ) = v and Auvw = 0, which contradicts G̃ adhering to A.

Lemma 20 gives us a way to compute nrd(G,B,A):

Lemma 21. Function nrd(G,B,A) can be computed in O(2|V |2 · |V |7) time.

Proof. The number of subsets of E is at most 2|V |2−|V |. For each subset E′ ⊆ E and every
tuple (u, v, w, s, x), we can check in O(|E(G)|) ⊆ O(|V |2) time whether G contains a non-trivial
side-trip-free s-w walk P with ρ(P ) = v and σ(P ) 6= x. We do this by checking whether G contains
the edge {v,w} as well as an s-v walk which does not use w. Thus, nrd(G,B,A) can be computed
in O(2|V |2 · |V |7) time.

We can now define the dynamic program which we will use to prove Theorem 17. Let n := |V |
and A ∈ {0, 1}n×n×n be a connectivity table. Recall that G[t] refers to the first t layers of G. We
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define the table entry T(A, t) ∈ N as the minimum number of time-edges which have to be removed
from G[t] in order for the resulting temporal graph to adhere to A.

Then, T is as follows.

Lemma 22. T as defined above satisfies the following recursive formula.

T(A, 0) = 0 (1)

strict paths: T(A, t) = min
B∈{0,1}n×n×n

T(B, t− 1) + srd(Gt, B,A) ∀t > 0 (2a)

non-strict paths: T (A, t) = min
B∈{0,1}n×n×n

T(B, t− 1) + nrd(Gt, B,A) ∀t > 0 (2b)

Proof. We prove the lemma for the strict case via induction over t. The non-strict case works
analogously. The correctness of the initialization T (A, 0) = 0 is easy to see since the layerless
temporal graph G[0] contains no non-trivial temporal paths.

Let now t > 0. It is easy to see that

T(A, t) ≤ min
B∈{0,1}n×n×n

T(B, t− 1) + srd(Gt, B,A)

because, for any choice of B, T(B, t− 1) + srd(Gt, B,A) is the minimum number of edge deletions
required to have G[t−1] fully adhere to B and have G[t] adhere to A.

To prove the reverse inequality, let E ′ be a minimum-size set of time-edges whose removal
from G[t] ensures that the resulting temporal graph G′ adheres to connectivity table A. Partition E ′

into Ẽ ∪ Ê with Ê containing the time-edges at time t. Let B̃ be the connectivity table which G′
[t−1]

fully adheres to.
We claim that |Ẽ | = T(B̃, t − 1). Clearly |Ẽ | ≥ T(B̃, t − 1). Furthermore, if |Ẽ | > T(B̃, t − 1)

were true, then one could take a set X of T(B̃, t − 1) time-edges whose deletion causes G[t−1] to

adhere to B̃. The set X ∪ Ê would then contradict the minimality of E ′.
Note that srd(Gt, B̃, A) = |Ê | by definition of srd. Therefore,

T(A, t) = T(B̃, t− 1) + srd(Gt, B̃, A) ≥ min
B∈{0,1}n×n×n

T(B, t− 1) + srd(Gt, B,A).

We now have all required ingredients to prove Theorem 17.

Proof of Theorem 17. Let (G, k) be an instance of (S)TFES and n the number of vertices. Further,
let A∗ ∈ {0, 1}n×n×n be the connectivity table with A∗

uvw = 0 if and only if u = w 6= v. Then
it follows from the definition of T that T(A∗, τ) ≤ k if and only if there is a set E ′ of at most k
time-edges such that G − E ′ contains no (strict) non-trivial side-trip-free temporal walk from a
vertex to itself. By Observation 18 this is equivalent to G−E ′ being free of (strict) temporal cycles.
Thus T(A∗, τ) ≤ k if and only if (G, k) is a yes-instance.

We compute T(A∗, τ) by means of Lemma 22. This requires to compute 2n
3

τ table entries,
each taking O(n4) time in the strict case (Lemma 19) and O(2n

2

n7) time in the non-strict case
(Lemma 20).

As it suffices to only keep the table entries for t − 1 and t in memory at any given time, the
computation requires O(2n

3

) space.
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We note that our dynamic program indeed solves the optimization variant of (S)TFES. That
is, given a temporal graph G, the dynamic program finds the smallest k for which (G, k) is a yes-
instance of the decision variant stated defined in Section 1. As shown in the previous proof, we can
easily use this result to solve any instance (G, k′) of the decision variant by comparing k′ to k.

For the ease of presentation, we did not store the actual solution, that is, the feedback edge
set of size T (A, t). However, the functions srd(Gt, B,A) and nrd(Gt, B,A) can easily be changed
to return the solution edge sets for each layer t. Note that this is possible without changing the
asymptotic running time by storing, in each table entry T (A, t), a reference to the entry T (B, t−1)
for which the minimum of the recursive formula of Lemma 22 is assumed. In this way, it can be
avoided to copy the corresponding solution sets over and over.

4.2 Parameterization by Treewidth and Lifetime

In this last part, we show that all our problem variants are fixed-parameter tractable when param-
eterized by the combination of the treewidth of the underlying graph and the lifetime. To this end
we employ an optimization variant of Courcelle’s famous theorem on graph properties expressible
in monadic second-order (MSO) logic [3, 10] and apply it in the temporal setting [11].

Theorem 23. (S)TFES and (S)TFCS are fixed-parameter tractable when parameterized by the
combination of the treewidth of the underlying graph and the lifetime.

To prove this result we require an auxiliary (static) graph S whose vertex set is the disjoint
union of

• the set V of vertices of G,

• the set E := E(G↓) of underlying edges,

• the set [τ ] of points in time, and

• the set E of time-edges.

Its edges are given by the (disjoint union of) the following binary relations, where we write R(e, v)
as a shortcut for (e, v) ∈ R:

• the incidence relation inc ⊆ E × V where inc(e, v) ⇐⇒ v ∈ e,

• the time relation time ⊆ E × [τ ] where time((e, t), t′) ⇐⇒ t = t′,

• the edge relation edge ⊆ E × E where edge((e, t), e′) ⇐⇒ e = e′, and

• the presence relation pres ⊆ E × [τ ] where pres(e, t) ⇐⇒ (e, t) ∈ E .

A monadic second-order (MSO) formula over S is a formula that uses

• the above relations,

• the logical operators ∧, ∨, ¬, =, and parentheses,

• a finite set of variables, each of which is either taken as an element or a subset of V (S), and

• the quantifiers ∀ and ∃.
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Additionally we will use some folklore shortcuts such as 6=, ⊆, ∈, and \, which can themselves
be replaced by MSO formulas.

By the following theorem, for any property that can be expressed by an MSO formula, a
minimum subset that satisfies it can be computed in linear time.

Theorem 24 (Arnborg et al. [3, Thm. 5.6]). There exists an algorithm that, given

• an MSO formula φ with free variables X1, . . . ,Xr,

• an affine function α(x1, . . . , xr), and

• a graph G together with a tree decomposition of width w,

finds the minimum of α(|X1|, . . . , |Xr|) over all X1, . . . ,Xr ⊆ V (G) for which formula φ is satisfied
on G. The running time is f(|φ|, w) · |G|, where |φ| is the length of φ and f some computable
function.

Proof of Theorem 23. Let (G = (V, E , τ), k) be a problem instance of one of our problem variants.
We will construct an MSO formula over the auxiliary graph S defined above that verifies whether
any given set is a solution to this instance.

First, we observe that the treewidth of S is bounded in terms of tw(G↓) + τ . To this end
let (T, {Bt}t∈V (T )) be an optimal tree decomposition of G↓ where T is a tree and Bt ⊆ V (G) for

t ∈ V (T ). Then (T, {B′
t}t∈V (T )) with B′

t := Bt ∪ [τ ] ∪ (E ∩
(

Bt

2

)

) ∪ {(e, t) ∈ E | e ∈ E ∩
(

Bt

2

)

} is a
tree decomposition of S of width at most O(τ · tw(G↓)2). Note that a suitable tree decomposition
of S can be computed in f(τ + tw(G↓)) · |S| time for some function f [7].

Second, we construct the MSO formulas to express our problem variants. We do this by as-
sembling them from several auxiliary subformulas encoding simple properties. We leave it to the
reader to verify that each of these formulas agrees with their description.

• tadj(v,w, t) tests whether two vertices v,w ∈ V are adjacent at time t:

tadj(v,w, t) := ∃e ∈ E : inc(e, v) ∧ inc(e, w) ∧ pres(e, t)

• conngraph(X,E′) tests whether the subgraph (X,E′ ∩X2) of G↓ is connected:

conngraph(X,E′) := ∀∅ 6= Y ⊂ X∃x ∈ X \ Y ∃y ∈ Y ∃e ∈ E′ : inc(e, x) ∧ inc(e, y)

• conn(v,w,E′) tests whether the two vertices v,w ∈ V are connected by a path that only uses
edges from E′ ⊆ E:

conn(v,w,E′) := ∃X ⊆ V : conngraph(X,E′) ∧ v ∈ X ∧ w ∈ X

• ttconn(v,w, t, E ′) tests whether two vertices v,w ∈ V are connected by a path that uses only
edges from {e | (e, t) ∈ E ′} for some given t and E ′ ⊆ E :

ttconn(v,w, t, E ′) := ∃E′ ⊆ E∀e ∈ E′∃ε ∈ E ′ : edge(ε, e) ∧ time(ε, t) ∧ conn(v,w,E′)

• tconn(v,w, t, E′) tests whether two vertices v,w ∈ V are connected by a path that uses only
edges from E′ ∩ Et:

tconn(v,w, t, E′) := ∃E ′ ⊆ E∀ε ∈ E ′∃e ∈ E′ : edge(ε, e) ∧ ttconn(v,w, t, E ′)

17



• teelem(v,w, t, E ′) tests whether ({v,w}, t) ∈ E ′ for some given E ′ ⊆ E :

teelem(v,w, t, E ′) := ∃ε ∈ E ′∃e ∈ E : edge(ε, e) ∧ inc(v, e) ∧ inc(w, e) ∧ time(ε, t)

Using these subformulas of constant size, we can now construct formulas expressing the existence
of a temporal cycle for each of our four problem variants as follows.

• cycleSC(E′) tests whether there is a strict temporal cycle using only time-edges whose under-
lying edges are contained in E′ ⊆ E:

cycleSC(E′) := ∃v1, v2, . . . , vτ ∈ V :
τ−2
∨

t∗=1

(

tadj(vτ , vt∗ , t
∗) ∧

τ
∧

t=t∗+1

(vt = vt−1 ∨ (∗))

)

,

where the subformula

(∗) := tadj(vt, vt−1, t) ∧ {vt, vt−1} ∈ E′ ∧ {vt, vt−1} 6= {vt∗ , vτ}

tests whether vt and vt−1 are connected at time t by a time-edge whose underlying edge is
contained in E′ \ {{vt∗ , vτ}}.

Here a satisfying sequence of vertices vτ , vt∗ , vt∗+1, . . . , vτ (sans repetitions) forms a closed
temporal path. Note that this sequence might not be a temporal cycle, but it will contain a
subsequence which does because the underlying edge {vt∗ , vτ} is used exactly once.

• cycleC(E′) tests whether there is a non-strict temporal cycle using only time-edges whose
underlying edges are contained in E′ ⊆ E:

cycleC(E′) := cycleSC(E′), but with (∗) replaced by (∗∗)

(∗∗) := tconn(vt, vt−1, t, E
′ \ {{vt∗ , vτ}})

The subformula (∗∗) tests whether vt and vt−1 are connected at time t by a path whose
underlying edges are all contained in E′ \ {{vt∗ , vτ}}.

• cycleSE(E ′) tests whether there is a strict temporal cycle using only time-edges in E ′ ⊆ E :

cycleSE(E ′) := cycleSC(E ′), but with (∗) replaced by (∗∗∗)

(∗∗∗) := teelem(vt, vt−1, t, E
′) ∧ {vt, vt−1} 6= {vt∗ , vτ}

The subformula (∗∗∗) tests whether vt and vt−1 are connected at time t by a time-edge from
E ′ \ {({vt∗ , vτ}, t)}.

• cycleE(E ′) tests whether there is a non-strict temporal cycle using only time-edges in E ′ ⊆ E :

cycleE(E ′) := cycleSC(E ′), but with (∗) replaced by (∗∗∗∗)

(∗∗∗∗) := ttconn(vt, vt−1, t, E
′ \ {({vt∗ , vτ}, t})

The subformula (∗∗∗∗) tests whether vt and vt−1 are connected at time t by a sequence of
time-edges from E ′ \ {({vt∗ , vτ}, t}.
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It is easy to check that the sizes of the formulas are in O(τ2). Based on these formulas, we can now
give formulas that check whether E ′ is a (strict) temporal feedback edge set, respectively whether
E′ is a (strict) temporal feedback connection set:

φ(S)TFES(E ′) := ¬ cycle(S)E(E \ E ′)

φ(S)TFCS(E′) := ¬ cycle(S)C(E \E′)

The result now follows from Theorem 24 (for α(x) = x) since |S| ∈ O(τ + |G|), tw(S) ∈ O(τ ·
tw(G↓)2), and |φ(S)TFES|, |φ(S)TFCS| ∈ O(τ2).

5 Conclusion

We investigated the parameterized computational complexity of the problem of removing edges
from a temporal graph to destroy all temporal cycles. We showed NP-hardness even for temporal
graphs with constant lifetime and W[1]-hardness for the solution size parameter. On the positive
side, our main results are fixed-parameter tractability for the parameter “number of vertices” and
the treewidth of the underlying graph combined with the lifetime.

We conclude with some challenges for future research. For the parameter lifetime τ , it remains
open whether there exists a polynomial-time algorithm for instances with 3 ≤ τ ≤ 7 in the strict
case and τ = 2 in the non-strict case. We believe that, for the strict case, our 3-SAT reduction
can be modified to use only seven time-labels. Similarly to the work of Zschoche et al. [23] in the
context of temporal separators, we could not resolve the question whether the non-strict variants
are fixed-parameter tractable for the combined parameter τ + k, whereas for the strict case, this is
almost trivial.

We further leave as a future research challenge to investigate whether our fixed-parameter
tractability result for the parameter “number of vertices” can be improved: On the one hand, we
would like to improve the running time of the algorithm or show some conditional running time
lower bound to show that it likely cannot be improved significantly. On the other hand, we leave
open whether it is possible to obtain a polynomial-size problem kernel for the number of vertices
as a parameter.

Additionally, it seems natural to study (S)TFES and (S)TFCS variants restricted to specific
temporal graph classes (e.g., see Fluschnik et al. [12]). In particular, we could not settle the
parameterized complexity of our problem variants when parameterized by (solely) the treewidth of
the underlying graph.

Moreover, we remark that we focused on finding feedback edge sets, ignoring the presumably
harder vertex variant; however, one can observe that our W[1]-hardness result also transfers to the
problem of finding feedback vertex sets in temporal graphs.

Finally, we are interested in the possibilities to use the temporal feedback edge set size as
a parameter for other temporal graph problems. In order to design FPT-algorithms with this
parameter it might be necessary to compute a solution to (S)TFES efficiently. Since our hardness
results refute efficient exact algorithms, we would like to obtain polynomial-time constant-factor
approximation algorithms for our problems.

Acknowledgments We would like to thank the anonymous reviewers for their careful checking
of the manuscript and their valuable feedback.

19



References

[1] Akanksha Agrawal, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Simultane-
ous feedback edge set: A parameterized perspective. Algorithmica, 83(2):753–774, 2021.
DOI:10.1007/s00453-020-00773-9. 2

[2] Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. The complexity
of optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907–
944, 2017. DOI:10.1007/978-3-319-28684-6_8. 2

[3] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991. DOI:10.1016/0196-6774(91)90006-K.
16, 17

[4] Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of mini-
mum temporally connected subgraphs. In Proceedings of the 43rd International Collo-
quium on Automata, Languages, and Programming (ICALP), pages 149:1–149:14, 2016.
DOI:10.4230/LIPIcs.ICALP.2016.149. 2

[5] Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs - Theory, Algorithms and Applications.
Springer, 2009. DOI:10.1007/978-1-84800-998-1. 10

[6] Kenneth A. Berman. Vulnerability of scheduled networks and a gen-
eralization of Menger’s theorem. Networks, 28(3):125–134, 1996.
DOI:10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P. 2

[7] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.
DOI:10.1137/S0097539793251219. 17
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