Skip to main content

On Flips in Planar Matchings

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12301))

Included in the following conference series:

Abstract

In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Consider all non-crossing straight-line perfect matchings on a set of 2n points that are placed equidistantly on the unit circle. The graph \({\mathcal H}_n\) has those matchings as vertices, and an edge between any two matchings that differ in replacing two matching edges that span an empty quadrilateral with the other two edges of the quadrilateral, provided that the quadrilateral contains the center of the unit circle. We show that the graph \({\mathcal H}_n\) is connected for odd n, but has exponentially many small connected components for even n, which we characterize and count via Catalan and generalized Narayana numbers. For odd n, we also prove that the diameter of \({\mathcal H}_n\) is linear in n. Furthermore, we determine the minimum and maximum degree of \({\mathcal H}_n\) for all n, and characterize and count the corresponding vertices. Our results imply the non-existence of certain rainbow cycles, and they answer several open questions and conjectures raised in a recent paper by Felsner, Kleist, Mütze, and Sering.

Torsten Mütze is also affiliated with the Faculty of Mathematics and Physics, Charles University Prague, Czech Republic, and he was supported by Czech Science Foundation grant GA 19-08554S and by German Science Foundation grant 413902284.

Martin Pergel was also supported by Czech Science Foundation grant GA 19-08554S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aichholzer, O., Asinowski, A., Miltzow, T.: Disjoint compatibility graph of non-crossing matchings of points in convex position. Electron. J. Combin. 22(1), 53 (2015). https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p65. Paper 1.65

  2. Aichholzer, O., Aurenhammer, F., Huemer, C., Vogtenhuber, B.: Gray code enumeration of plane straight-line graphs. Graphs Combin. 23(5), 467–479 (2007). https://doi.org/10.1007/s00373-007-0750-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Aichholzer, O., et al.: Flip distances between graph orientations. In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 120–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30786-8_10

    Chapter  Google Scholar 

  4. Berry, L.A., Reed, B., Scott, A., Wood, D.R.: A logarithmic bound for the chromatic number of the associahedron. arXiv:1811.08972 (2018)

  5. Ceballos, C., Santos, F., Ziegler, G.M.: Many non-equivalent realizations of the associahedron. Combinatorica 35(5), 513–551 (2014). https://doi.org/10.1007/s00493-014-2959-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Cleary, S., St. John, K.: Rotation distance is fixed-parameter tractable. Inf. Process. Lett. 109(16), 918–922 (2009). https://doi.org/10.1016/j.ipl.2009.04.023

    Article  MathSciNet  MATH  Google Scholar 

  7. Cleary, S., St. John, K.: A linear-time approximation for rotation distance. J. Graph Algorithms Appl. 14(2), 385–390 (2010). http://dx.doi.org/10.7155/jgaa.00212

  8. Fabila-Monroy, R., et al.: On the chromatic number of some flip graphs. Discr. Math. Theor. Comput. Sci. 11(2), 47–56 (2009). http://dmtcs.episciences.org/460

  9. Felsner, S., Kleist, L., Mütze, T., Sering, L.: Rainbow cycles in flip graphs. SIAM J. Discr. Math. 34(1), 1–39 (2020). https://doi.org/10.1137/18M1216456

    Article  MathSciNet  MATH  Google Scholar 

  10. Hernando, C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings. Graphs Combin. 18(3), 517–532 (2002). https://doi.org/10.1007/s003730200038

    Article  MathSciNet  MATH  Google Scholar 

  11. Houle, M.E., Hurtado, F., Noy, M., Rivera-Campo, E.: Graphs of triangulations and perfect matchings. Graphs Combin. 21(3), 325–331 (2005). https://doi.org/10.1007/s00373-005-0615-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Huemer, C., Hurtado, F., Noy, M., Omaña-Pulido, E.: Gray codes for non-crossing partitions and dissections of a convex polygon. Discr. Appl. Math. 157(7), 1509–1520 (2009). https://doi.org/10.1016/j.dam.2008.06.018

    Article  MathSciNet  MATH  Google Scholar 

  13. Hurtado, F., Noy, M.: Graph of triangulations of a convex polygon and tree of triangulations. Comput. Geom. 13(3), 179–188 (1999). https://doi.org/10.1016/S0925-7721(99)00016-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms. Part 1. Addison-Wesley, Upper Saddle River, NJ (2011)

    Google Scholar 

  15. Lee, C.W.: The associahedron and triangulations of the \(n\)-gon. Eur. J. Combin. 10(6), 551–560 (1989). https://doi.org/10.1016/S0195-6698(89)80072-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, M., Zhang, L.: Better approximation of diagonal-flip transformation and rotation transformation. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 85–94. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-68535-9_12

    Chapter  Google Scholar 

  17. Lucas, J.M., van Baronaigien, D.R., Ruskey, F.: On rotations and the generation of binary trees. J. Algorithms 15(3), 343–366 (1993). https://doi.org/10.1006/jagm.1993.1045

    Article  MathSciNet  MATH  Google Scholar 

  18. Milich, M.: Kreise für planare Matchings. Bachelor’s thesis, TU Berlin, German (2018)

    Google Scholar 

  19. Milich, M., Mütze, T., Pergel, M.: On flips in planar matchings. arXiv:2002.02290. Preprint version of the present paper with full proofs (2020)

  20. Parlier, H., Petri, B.: The genus of curve, pants and flip graphs. Discr. Comput. Geom. 59(1), 1–30 (2018). https://doi.org/10.1007/s00454-017-9922-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Pilaud, V., Santos, F.: Quotientopes. Bull. Lond. Math. Soc. 51(3), 406–420 (2019). https://doi.org/10.1112/blms.12231

    Article  MathSciNet  MATH  Google Scholar 

  22. Pournin, L.: The diameter of associahedra. Adv. Math. 259, 13–42 (2014). https://doi.org/10.1016/j.aim.2014.02.035

    Article  MathSciNet  MATH  Google Scholar 

  23. Pournin, L.: Eccentricities in the flip-graphs of convex polygons. J. Graph Theor. 92(2), 111–129 (2019). https://doi.org/10.1002/jgt.22443

    Article  MathSciNet  MATH  Google Scholar 

  24. Reading, N.: From the Tamari lattice to Cambrian lattices and beyond. In: Müller-Hoissen, F., Pallo, J., Stasheff, J. (eds.) Associahedra, Tamari Lattices and Related Structures. Progress in Mathematics, vol. 299, pp. 293–322. Birkhäuser/Springer, Basel (2012). https://doi.org/10.1007/978-3-0348-0405-9_15

    Chapter  MATH  Google Scholar 

  25. Reading, N.: Lattice theory of the poset of regions. In: Grätzer, G., Wehrung, F. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 399–487. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44236-5_9

    Chapter  Google Scholar 

  26. Rogers, R.O.: On finding shortest paths in the rotation graph of binary trees. In: Proceedings of the Thirtieth Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, 1999, vol. 137, pp. 77–95 (1999)

    Google Scholar 

  27. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and hyperbolic geometry. J. Amer. Math. Soc. 1(3), 647–681 (1988). http://www.jstor.org/stable/1990951

Download references

Acknowledgements

We thank the anonymous reviewers of the extended abstract of this paper, who provided many insightful comments. In particular, one referee’s observation about our proof of Lemma 3 improved our previous upper bound on the diameter of \({\mathcal H}_n\) for odd n from \({\mathcal O}(n\log n)\) to \({\mathcal O}(n)\) (recall Theorem 4).

Figure 3 was obtained by slightly modifying Fig. 10 from [9], and the authors of this paper kindly provided us with the source code of their figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Mütze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milich, M., Mütze, T., Pergel, M. (2020). On Flips in Planar Matchings. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60440-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60439-4

  • Online ISBN: 978-3-030-60440-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics