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Abstract. A matching is a set of edges without common endpoint. It
was recently shown that every 1-planar graph (i.e., a graph that can be
drawn in the plane with at most one crossing per edge) that has minimum
degree 3 has a matching of size at least n+12

7
, and this is tight for some

graphs. The proof did not come with an algorithm to find the matching
more efficiently than a general-purpose maximum-matching algorithm.
In this paper, we give such an algorithm. More generally, we show that
any matching that has no augmenting paths of length 9 or less has size
at least n+12

7
in a 1-planar graph with minimum degree 3.

1 Introduction

The matching problem (i.e., finding a large set of edges in a graph such that no
two chosen edges have a common endpoint) is one of the oldest problem in graph
theory and graph algorithms, see for example [3,19] for overviews.

To find a maximum matching in a graph G = (V,E), the fastest algorithm is
the one by Hopcroft and Karp if G is bipartite [16], and the one by Micali and
Vazirani otherwise ([20], see also [25] for further clarifications). As pointed out
in [25], for a graph with n vertices and m edges the run-time of the algorithm
by Micali and Vazirani is O(m

√
n) in the RAM model and O(m

√
nα(m,n))

in the pointer model, where α(·) is the inverse Ackerman function. For planar
graphs (graphs that can be drawn without crossing in the plane) there exists a
linear-time approximation scheme for maximum matching [1], and it can easily
be generalized to so-called H-minor-free graphs [10] and k-planar graphs [14].

For many graph classes, specialized results concerning matchings and match-
ing algorithms have been found. To name just a few, every bipartite d-regular
graph has a perfect matching (a matching of size n/2) [15] and it can be found
in O(m) time [9]. Every 3-regular biconnected graph has a perfect matching [22]
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and it can be found in linear time for planar graphs and in near-linear time for
arbitrary graphs [4]. Every graph with a Hamiltonian path has a near-perfect
matching (of size �(n− 1)/2�); this includes for example the 4-connected pla-
nar graphs [24] for which the Hamiltonian path (and with it the near-perfect
matching) can be found in linear time [8].

For graphs that do not have near-perfect matchings, one possible avenue of
exploration is to ask for guarantees on the size of matchings. One of the first
results in this direction is due to Nishizeki and Baybars [21], who showed that
every planar graph with minimum degree 31 has a matching of size at least n+4

3 .
(This bound is tight for some planar graphs with minimum degree 3.) The proof
relies on the Tutte-Berge theorem and does not give an algorithm to find such
a matching (or at least, none faster than any maximum-matching algorithm).
Over 30 years later, a linear-time algorithm to find a matching of this size in
planar graphs of minimum degree 3 was finally developed by Franke, Rutter,
and Wagner [13]. The latter paper was a major inspiration for our current work.

In recent years, there has been much interest in near-planar graphs, i.e.,
graphs that may be required to have crossings but that are “close” to planar
graphs in some sense. We are interested here in 1-planar graphs, which are those
that can be drawn with at most one crossing per edge. (Detailed definitions can
be found in Sect. 2.) See a recent annotated bibliography [18] for an overview of
many results known for 1-planar graphs. The first author and Wittnebel [6] gave
matching-bounds for 1-planar graphs of varying minimum degrees, and showed
that any 1-planar graph with minimum degree 3 has a matching of size at least
n+12

7 . (This bound is again tight.)
The proof in [6] is again via the Tutte-Berge theorem and does not give

rise to a fast algorithm to find a matching of this size. This is the topic of the
current paper. We give an algorithm that finds, for any 1-planar graph with
minimum degree 3, a matching of size at least n+12

7 in linear time in the RAM
model and time O(nα(n)) in the pointer-model. The algorithm consists simply
of running the algorithm by Micali and Vazirani for a limited number of rounds
(and in particular, does not require that a 1-planar drawing of the graph is
given). The bulk of the work consists of the analysis, which states that if there
are no augmenting paths of length 9 or less, then the matching has the desired
size for graphs with minimum degree 3. Along the way, we prove some bounds
obtained for graphs with higher minimum degree, though these are not tight.

The paper is structured as follows. After reviewing some background in
Sect. 2, we state the algorithm in Sect. 3. The analysis proceeds in multiple steps
in Sect. 4. We first delete short flowers from the graph (and account for free ver-
tices in them directly). The remaining graph is basically bipartite, and we can
use bounds known for independent sets in 1-planar graphs to obtain matching-
bounds that are very close to the desired goal. Closing this gap requires non-
trivial modifications; we give a sketch of the involved techniques in Sect. 5 and
refer to the full paper for the technical details.

1 In this paper, ‘minimum degree k’ stands for ‘minimum degree at least k’; of course
the bounds also hold if all degrees are higher.
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2 Background

We assume familiarity with graphs and graph algorithms, see for example [11,23].
Throughout the paper, G is a simple graph with n vertices and m edges. A
matching of G is a subset M of its edges without common endpoints; we say that
e = (x, y) ∈ M is matched and x and y are matching-partners. V (M) denotes
the endpoints of edges in M ; we call v ∈ V (M) matched and all other vertices
free. An alternating walk of M in G is a walk that alternates between unmatched
and matched edges. An augmenting path of M in G is an alternating walk that
repeats no vertices and begins and ends at a free vertex; we use k-augmenting
path for an augmenting path with at most k edges. If P is an augmenting path
of M (and viewed as an edge-set), then (M \ P ) ∪ (P \ M) is also a matching
and has one edge more than M .

A drawing Γ of a graph consists of assigning points in R
2 to vertices and

simple curves to each edge such that curves of edges end at the points of its
endpoints. We usually identify the graph-theoretic object (vertex, edge) with the
geometric object (point, curve) that it has been assigned to. We only consider
good drawings (see [23] for details) that avoid degeneracies such as an edge going
through the point of a non-incident vertex or two edges intersecting in more than
one point. The connected sets of R2 \ Γ are called the regions of the drawing.

A crossing c of Γ is a pair of two edges (v, w) and (x, y) that have a point in
their interior in common. A drawing Γ is called k-planar (or planar for k = 0) if
every edge has at most k crossings. A graph is called k-planar if it has a k-planar
drawing. While planarity can be tested in linear time [7,17], testing 1-planarity
is NP-complete [14].

Fix a 1-planar drawing Γ and consider a crossing c between edges (v0, v2)
and (v1, v3). Then we could draw edge (vi, vi+1) (for i = 0, . . . , 3 and addition
modulo 4) without crossing by walking “very close” to crossing c. We call the
pair (vi, vi+1) a potential kite-edge and note that if we inserted (vi, vi+1) in the
aforementioned manner, then it would be consecutive with the crossing edges in
the cyclic orders of edges around vi and vi+1 in Γ .

3 Finding the Matching

Our algorithm to find a large matching is a one-liner: repeatedly extend the
matching via 9-augmenting paths (i.e., of length at most 9) until there are no
more such paths. Note that the algorithm does not depend on the knowledge
that the graph is 1-planar and does not require having a 1-planar drawing at
hand. It could be executed on any graph; our contribution is to show (in the
next section) that if it is executed on a 1-planar graph G with minimum degree
3 then the resulting matching M has size at least n+12

7 .

Running Time. Finding a matching M in G such that there is no k-augmenting
path can be done in time O(k|E|) in the RAM model using the algorithm by
Micali and Vazirani [20]. (We state all run-time bounds here in the RAM model;
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for the pointer model add a factor of α(|E|, |V |).) This algorithm runs in phases,
each of which has a running time of O(|E|) and increases the length of the
minimum-length augmenting path by at least two. See for example the paper by
Bast et al. [2] for a more detailed explanation. Since for 1-planar graphs we have
|E| ∈ O(|V |) we get a linear time algorithm in the number of vertices of G to
find a matching without 9-augmenting paths.

4 Analysis

Assume that M is a matching without augmenting paths of length at most 9,
and let F be the free vertices; |F | = n − 2|M |. To analyze the size of M , we
proceed in three stages. First we remove some vertices and matching-edges that
belong to short flowers (defined below); these are “easy” to account for. Next
we split the remaining vertices by their distance (measured along alternating
paths) to free vertices. Since short flowers have been removed, no edges can
exist between vertices of even small distance; they hence form an independent
set. Using a crucial lemma from [6] on the size of independent sets in 1-planar
graphs, this shows that |M | ≥ 7

50 (n + 12), which is very close to the desired
bound of n+12

7 . The last stage (which does the improvement from 7
50 to 1

7 ) will
require non-trivial effort and is done mostly out of academic interest; a sketch
is in Sect. 5 and details are in the full paper [5].

Flowers. A flower2 is an alternating walk that begins and ends at the same free
vertex; we write k-flower for a flower with at most k edges. We only consider
7-flowers; Fig. 1 illustrates all possible such flowers. Note that such short flowers
split into a path (called stem) and an odd simple cycle (the blossom); we call a
flower a cycle-flower if the stem is empty.

Fig. 1. (a–d) All possible 7-flowers. Free vertices are white, matched edges are thick.
(e-f) Augmenting paths found in the proofs of (e) Claim 1 and (f) Claim 2.

Let VC (the “C” reminds of “cycle”) be all vertices that belong to some 7-
cycle-flower, let FC be all free vertices in VC , and let MC be all matching-edges
within VC , i.e., all edges with both endpoints in VC .
2 Our terminology follows the one in Edmonds’ famous blossom-algorithm [12].
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Claim 1. Let M be a matching in a 1-planar graph G with minimum degree 3
such that there is no 9-augmenting path and let FC and MC be defined as above.
Then |FC | ≤ |MC |.
Proof. For every f ∈ FC there exists some 7-cycle-flower f -v1-v2-. . . -vk-f with
k ∈ {2, 4, 6}. Assign f to edge (v1, v2). We claim that f is the only vertex in
FC assigned to (v1, v2), otherwise there would be an augmenting path of length
less than 9. Since (v1, v2) ∈ MC , this then proves the claim. So assume for
contradiction that another vertex f ′ ∈ FC was also assigned to (v1, v2). Then f ′

is adjacent to one of v1, v2. If it is v2, then f ′-v2-v1-f is a 3-augmenting path. If
it is v1, then f ′-v1-. . . -vk-f is a 7-augmenting path, see Fig. 1(e). 	


From now on we will only study the graph G\VC . Observe that M restricted
to this graph is again a matching without augmenting paths up to length 9. All
following definitions are only for vertices and edges in G \ VC . Let FB (the “B”
reminds of “blossom”) be all those free vertices f that are not in FC and that
belong to a 7-flower. By f �∈ FC this flower has a non-empty stem, which is
possible only if its length is exactly 7 and the stem has two edges f -s-t while
the blossom is a 3-cycle t-x0-x1-t. Furthermore (s, t) and (x0, x1) are matching-
edges. Let MB be the set of such matching-edges (x0, x1) i.e., matching-edges
that belong to the blossom of such a 7-flower. We do not include the matching-
edge (s, t) in MB (unless it belongs to a different 7-flower where it is in the
blossom). Let TB be the set of such vertices t, i.e., vertices that belong to a
7-flower and belong to both the stem and the blossom. Set VB = TB ∪ V (MB)
(see also Fig. 2).

Claim 2. Let M be a matching in a 1-planar graph G with minimum degree 3
such that there is no 9-augmenting path and let TB and MB be defined as above.
Then |TB | ≤ |MB |.
Proof. We argue similarly to the proof of Claim 1, i.e., assign each t ∈ TB to
an edge in MB and argue that no two vertices are assigned to the same edge
unless there is a 9-augmenting path. Choose for each t ∈ TB a matching-edge
(x0, x1) ∈ MB that is within the same blossom of some 7-flower of G \ VC .
Assume for contradiction that some other vertex t′ ∈ TB is also assigned to
(x0, x1). Let t-s-f and t′-s′-f ′ be the stems of the 7-flowers containing t and t′,
and note that s �= s′ since they are matching-partners of t �= t′. This gives an
alternating path f -s-t-x0-x1-t′-s′-f ′, see Fig. 1(f). Depending on whether f = f ′

this is a 7-augmenting path or 7-cycle-flower; the former contradicts the choice
of M and the latter that x0, x1 ∈ G \ VC . 	

The Auxiliary Graph H. For any vertex v ∈ G\VC \VB , let the distance to a free
vertex be the number of edges in a shortest alternating path from a free vertex
to v. Let Dk be the vertices of distance k to a free vertex. Since there are no
9-agumenting paths, one can easily see:

Observation 1. In graph G \ VC \ VB, there are no matching-edges within Dk

for k = 1 and k = 3, and no edges at all within Dk for k = 0 and k = 2.
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Proof. If there was such an edge (v, v′), then it, together with the alternating
paths of length k that lead from free vertices to v, v′, form a 7-augmenting path
or a 7-flower. 	


From now on, we will only study the subgraph H induced by D0 ∪ · · · ∪ D3,
noting again that this does not include the vertices in VC ∪ VB . For ease of
referring to them, we rename the vertices of H as follows (see also Fig. 2):

– FH = F \ FC = D0 are the free vertices in H.
– S = D1 are the vertices in H that are adjacent to FH .
– TH = D2 are the vertices in H that have matching-partners in S and are not

in S.
– U = D3 are the vertices in H that are adjacent to TH and not in F ∪S ∪TH .

Fig. 2. Illustration of the partitioning of edges and vertices and graph H.

The following shortcuts will be convenient. For any vertex sets A,B, an A-
vertex is a vertex in A, and an AB-edge is an edge between an A-vertex and
a B-vertex. For any vertex v an A-neighbour is a neighbour of v in A. Using
Observation 1 and the definition of VC (which includes the entire flower) and VB

(which includes both ends of the matching-edge) one easily verifies the following:

Observation 2. – There are no matching-edges within S or within U .
– There are no edges within FH or within TH .
– The matching-partner of an S-vertex is in TH ∪ TB.
– The matching-partner of a U -vertex is not in H.
– All neighbours of an FH-vertex belong to S or are not in H.
– All neighbours of a TH-vertex belong to S ∪ U or are not in H.



254 T. Biedl and F. Klute

Let MS be the set of matching-edges incident to S. Let MU be the matching-
edges incident to U . Since there are no matching-edges within S or U , we have
|S| = |MS | and |U | = |MU |.

We stated earlier that any neighbour of FH is either in S or not in H. The
latter is actually impossible (though this is non-trivial), and likewise for TH .

Fig. 3. Augmenting paths found in the proofs of (a) Lemma 1, t ∈ TH has a neighbour
in VC . (b) Lemma 1, t ∈ TH has a neighbour in VB .

Lemma 1. No vertex in FH ∪ TH has a neighbour in G that is outside H.

Proof. First observe that no edge can connect a vertex in FH ∪ TH = D0 ∪ D2

with a vertex z ∈ Dk for k ≥ 4 since z would have been added to D1 = S
or D3 = U instead. So we must only show that no vertex in FH ∪ TH has a
neighbour in VC ∪ VB . We show this only for t ∈ TH ; the proof is similar (and
even easier) for f ∈ FH by replacing the path t-s-f defined below with just f .

Consider Fig. 3(a). Fix some t ∈ TH , let s ∈ S be its matching-partner and let
f ∈ FH be an arbitrary free vertex incident to s. Assume for contradiction that
t has a neighbour vi in VC , so vi belongs to some 7-cycle-flower v0-v1-. . . -vk-v0
where k ∈ {2, 4, 6} and v0 ∈ F . Note that v0 �= f since v0 ∈ FC while f ∈ FH .
If i is odd then f -s-t-vi-. . . -vk-v0 is a 9-augmenting path, and if i is even then
f -s-t-vi-vi−1-. . . -v1-v0 is a 9-augmenting path; both are impossible.

Now consider some (x0, x1) ∈ MB that belongs to a 7-flower f ′-s′-t′-x0-x1-
t′-s′-f ′ where (s′, t′) is a matching-edge and t′ ∈ TB . Note that t′ �= t (hence
s′ �= s) since t′ ∈ TB while t ∈ TH . If t and t′ are adjacent, then f -s-t-t′-s′-f ′ is
a 5-augmenting path or a 5-cycle-flower. If t and xi are adjacent for i ∈ {0, 1},
then f -s-t-xi-x1−i-t′-s′-f ′ is a 7-augmenting path or 7-cycle-flower. See Fig. 3(b).
Both are impossible since t �∈ TC . 	


In particular, if a vertex in FH ∪TH had degree d in G, then it also has degree
d in H; this will be important below.

Minimum Degree 3. With this, we can prove our first matching-bound. We
need the following lemma by Biedl and Wittnebel, which is derived via (quite
complicated) graph-augmentation and edge-counting:
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Lemma 2 ([6]). Let G be a simple 1-planar graph. Let A be a non-empty
independent set of G where all vertices in A have degree 3 or more in G. Let Ad

be the vertices of degree d in A. Then 2|A3|+
∑

d>3(3d−6)|Ad| ≤ 12|V \A|−24.

Lemma 3. We have (i) |FH | ≤ 6|S|−12 and (ii) |FH |+ |TH | ≤ 6|S|+6|U |−12.

Proof. Consider first the subgraph of H induced by FH and S. By Observation 2
and Lemma 1 any vertex in FH has degree at least 3 in this subgraph, and they
form an independent set. Consider the inequality of Lemma 2. Any vertex in
FH contributes at least 2 units to the left-hand side while the right-hand side is
12|S| − 24. This proves Claim (i) after dividing.

Now consider the full graph H. By Observation 2 and Lemma 1 any vertex
in FH ∪TH has degree at least 3 in H, and they form an independent set. Claim
(ii) now follows from Lemma 2 as above. 	

Corollary 1. If the minimum degree is 3, then |M | ≥ 7

50 (n + 12).

Proof. Adding Lemma 3(ii) six times to Lemma 3(i) gives

7 |FH | + 6|TH | ≤ 42 |S| + 36|U | − 84 ≤ 42|MS | + 36|MU | − 84.

Adding Claim 1 seven times and Claim 2 six times gives

7 |FC | + 7 |FH | + 6|TB | + 6|TH | ≤ 42|MS | + 36|MU | + 7|MC | + 6|MB | − 84.

Since |S| = |MS | = |TH | + |TB |, this simplifies to

7 |F | = 7 |FH | + 7 |FC | ≤ 36|MS | + 36|MU | + 7|MC | + 6|MB | − 84 ≤ 36|M | − 84.

Therefore 2|M | = n − |F | ≥ n + 12 − 36
7 |M | which gives the bound after rear-

ranging. 	

It is worth pointing out that this result (as well as Theorem 2 below) does not

use 1-planarity of the graph except when using the bound in Lemma 2. Hence,
similar bounds could be proved for any graph class where the size of independent
sets can be upper-bounded relative to its minimum degree.

Doing the improvement from 7
50 to 1

7 will be done by improving Lemma 3(ii)
slightly. We will show the following in Sect. 5:

Lemma 4. |FH | + |TH | ≤ 6|S| + 5|U | − 12.

This then gives our main result:

Theorem 1. Let G be a 1-planar graph with minimum degree 3, and let M be a
matching in G that has no augmenting path of length 9 or less. Then |M | ≥ n+12

7 .

Proof. Using |S| = |MS | and |U | = |MU | we have

|FH | + |TH | ≤ 6|MS | + 5|MU | − 12 from Lemma 4
|FC | ≤ |MC | from Claim 1
|TB | ≤ |MB | from Claim 2.

Since |TH |+|TB | = |MS | this gives |F |+|MS | ≤ |MC |+|MB |+6|MS |+5|MU |−12,
therefore |F | ≤ 5|M | − 12. This implies 2|M | = n − |F | ≥ n − 5|M | + 12 or
7|M | ≥ n + 12. 	
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Higher Minimum Degree. Since the bound for independent sets in 1-planar
graphs gets smaller when the minimum degree is larger, we can prove better
matching-bounds for higher minimum degree. The following is proved exactly
like Lemma 3:

Lemma 5. If the minimum degree is δ > 3, then

(i) |FH | ≤ 4
δ−2 (|S| − 2) and (ii) |FH | + |TH | ≤ 4

δ−2 (|S| + |U | − 2).

Theorem 2. Let G be a 1-planar graph with minimum degree δ. Let M be any
matching in G without 9-augmenting path. Then

– |M | ≥ 3
10 (n + 12) for δ = 4,

– |M | ≥ 1
3 (n + 12) for δ ≥ 5.

Proof. Set c = 4
δ−2 , so |FH | ≤ c(|S| − 12) and |FH | + |TH | ≤ c(|S| + |U | − 12).

Taking the former inequality once and adding the latter one c times gives

(c+1)|FH |+c|TH | ≤ (c2+c)|S|+c2|U |−(c+1)12 = (c2+c)|MS |+c2|MU |−(c+1)12.

Adding Claim 1 c + 1 times and Claim 2 c times gives

(c+1)(|FC |+|FH |) + c(|TB |+|TH |)
≤ (c2+c)|MS | + c2|MU | + (c+1)|MC | + c|MB | − (c+1)12. (1)

For δ = 4 we have c = 2, and with |TB | + |TH | = |MS | Eq. 1 simplifies to

3 |F | ≤ 4|MS | + 4|MU | + 3|MC | + 2|MB | − 36 ≤ 4|M | − 36.

Therefore 2|M | = n − |F | ≥ n + 12 − 4
3 |M |. For δ ≥ 5 we have c2 < c + 1 and so

can only simplify Eq. 1 to (c + 1)(|FC | + |FH |) ≤ (c + 1)|M | − (c + 1)12, hence
2|M | = n − |F | ≥ n + 12 − |M |. The bounds follow after rearranging. 	


For δ = 4, 5 these are close to the bounds of 1
3 (n+4) (for δ = 4) and 1

5 (2n+3)
(for δ = 5) that we know to be the tight lower bounds on the maximum matching
size [6]. Unfortunately we do not know how to improve Theorem 2 for δ > 3; the
techniques of Sect. 5 do not work for higher minimum degree.

Stopping Earlier? Currently we remove all augmenting paths up to length 9.
Naturally one wonders whether one could stop earlier? We can show that it suf-
fices to remove only 7-augmenting paths by inspecting the analysis. The details
are not difficult but tedious and require even more notation; we omit them.

On the other hand, it is not enough to remove only 3-augmenting paths.
Figure 4 shows a matching in a 1-planar graph that has no 3-augmenting paths,
but only size n+12

8 . We can show that this is tight.

Theorem 3. Let G be a 1-planar graph with minimum degree 3 and let M be a
matching without 3-augmenting paths. Then |M | ≥ n+12

8 .
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Fig. 4. A graph with a matching marked in thick edges of size n+12
8

. No 3-augmenting
path exists for the chosen matching, but there are 5-augmenting paths. The gray area
marks an example of 16 vertices such that only 2 matching edges exist. Repeating this
configuration gives the example for arbitrary n.

Proof. The proof is very similar to the one of Theorem 2 in [13] except that we
use Lemma 2 rather than the edge-bound for planar bipartite graphs. We repeat
it here for completeness, mimicking their notation. Let Mc be all those matching-
edges (x, y) for which some free vertex f ∈ F is adjacent to both x and y, and
let Fc be all such free vertices. Vertex f is necessarily the only F -neighbour of
x and y, else there would be a 3-augmenting path. Hence |Fc| ≤ |Mc|.

Let Mo and Fo be the remaining matching-edges and free vertices. For each
edge (x, y) in Mo, at most one of the ends can have F -neighbours, else (x, y)
would be in Mc or there would be a 3-augmenting path. Let S be the ends of
edges in Mo that have F -neighbours, and let G′ be the auxiliary graph induced
by Fo and S. Then |Fo| ≤ 6|S| − 12 ≤ 6|Mo| − 12 by Lemma 2.

Putting both together, 2|M | = n−|F | ≥ n+12−|Mc|−6|Mo| ≥ n+12−6|M |
and the bound follows after rearranging. 	


5 Proof of Lemma 4

(Sketch; details are in the full paper [5].) Fix an arbitrary 1-planar drawing of H.
We obtain a 1-planar drawing H+ from H by inserting any potential kite-edge
(t, x) with t ∈ TH and x ∈ S ∪ U that does not exist yet. If (t, x) exists, but has
a crossing, then re-route it to become uncrossed (i.e., without crossing).

We split TH -vertices and assign them as follows. If t ∈ TH has an uncrossed
edge to a U -neighbour u, then assign t to u. Else, if t has three or more S-
neighbours, then add t to a vertex set Tσ. Else assign t to an arbitrary U -
neighbour u. In the first and third case we call (t, u) the assignment-edge. Let
U (d) be the set of all those vertices u ∈ U that have d incident assignment-edges.
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Let T (d) be all those vertices in TH \ Tσ that have been assigned to a vertex in
U (d). Since |T (d)| = d|U (d)|, we have:

Observation 3. |T0| = 0 and
∑5

d=1 |T (d)| ≤ 5
∑5

d=0 |U (d)|.
Transform drawing H+ as follows:

– Delete all vertices in U (0) ∪ · · · ∪ U (5) and T (1) ∪ · · · ∪ T (5) and all SU -edges.
– For any remaining t ∈ TH , delete all edges to U -neighbours except the

assignment-edge (if any).
– While there exists a vertex t ∈ TH \ Tσ for which either the assignment-edge

(t, u) or the matching-edge (s, t) is uncrossed: Delete t and insert edge (s, u).
Normally (s, u) is routed along the path s-t-u, which has at most one crossing.
But if this leads to a crossing of (s, u) with an edge that ends at s or u, then
instead draw (s, u) as a kite-edge of that crossing so that the drawing remains
good.

For this proof sketch, let us assume that all vertices in TH \ Tσ get deleted.
(This is not always the case, and those “remaining” vertices of TH are a major
difficulty to overcome; see [5].)

Assuming this to be the case, we have in the resulting drawing J the indepen-
dent set FH ∪Tσ ∪⋃

d≥6 U (d) and the vertices of SH . All vertices in FH ∪Tσ have
degree at least 3. Vertex u ∈ U (d) (for d ≥ 6) has degree at least d in J , because
it was assigned to d TH -vertices and therefore inherits edges to their d distinct
matching-partners. Lemma 4 now holds by applying Lemma 2 to drawing J and
combining it with Observation 3 as follows:

12|SH |−24 ≥ 2|FH |+2|Tσ|+
∑

d≥6

(3d−6)|U (d)| ≥ 2|FH |+2|Tσ|+
∑

d≥6

(2d−10)|U (d)|

≥ 2|FH |+2|Tσ|+2
∑

d≥6

|T (d)|−10
∑

d≥6

|U (d)|+2
∑

d≤5

|T (d)|−10
∑

d≤5

|U (d)|

≥ 2|FH |+2|TH | − 10|U |
and hence |FH |+|TH | ≤ 6|SH |+5|U | − 12.

6 Summary and Outlook

In this paper, we considered how to find a large matching in a 1-planar graph
with minimum degree 3. We argued that any matching without augmenting
paths of length up to 9 has size at least n+12

7 , which is also the largest matching
one can guarantee to exist in any 1-planar graph with minimum degree 3. Such
a matching can easily be found in linear time, even if no 1-planar drawings
is known, by stopping the matching algorithm by Micali and Vazirani after a
constant number of rounds.

It remains open how to find large matchings in 1-planar graphs with minimum
degree δ > 3 that match the upper bounds. It would also be interesting to study
other near-planar graph classes such as k-planar graphs (for k > 1); here we
do not even know what tight matching-bounds exist and much less how to find
matchings of that size in linear time.
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