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Abstract
A graph G = (V , E) is a double-threshold graph if there exist a vertex-weight func-
tion w : V → R and two real numbers lb,ub ∈ R such that uv ∈ E if and only
if lb ≤ w(u) + w(v) ≤ ub. In the literature, those graphs are studied also as the
pairwise compatibility graphs that have stars as their underlying trees. We give a new
characterization of double-threshold graphs that relates them to bipartite permutation
graphs. Using the new characterization, we present a linear-time algorithm for rec-
ognizing double-threshold graphs. Prior to our work, the fastest known algorithm by
Xiao and Nagamochi [Algorithmica 2020] ran in O(n3m) time, where n and m are
the numbers of vertices and edges, respectively.
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1 Introduction

A graph is a threshold graph if there exist a vertex-weight function and a real number
called a weight lower bound such that two vertices are adjacent in the graph if and
only if the associated vertex weight sum is at least the weight lower bound. Threshold
graphs and their generalizations are well studied because of their beautiful structures
and applications in many areas [6,15]. In particular, the edge-intersections of two
threshold graphs, and their complements (i.e., the union of two threshold graphs) have
attracted several researchers in the past, and recognition algorithms with running time
O(n5) by Ma [14], O(n4) by Raschle and Simon [19], and O(n3) by Sterbini and
Raschle [24] have been developed, where n is the number of vertices.

In this paper, we study the class of double-threshold graphs, which is a proper
generalization of threshold graphs and a proper specialization of the graphs that are
edge-intersections of two threshold graphs [11]. A graph is a double-threshold graph
if there exist a vertex-weight function and two real numbers called weight lower and
upper bounds such that two vertices are adjacent if and only if the sum of their weights
is at least the lower bound and at most the upper bound. Our main result in this paper
is a linear-time recognition algorithm for double-threshold graphs based on a new
characterization.

As described below, there are at least two different lines of recent studies that led
to this class of graphs: one is on multithreshold graphs and the other is on pairwise
compatibility graphs.

Multithreshold graphs Jamison and Sprague [12] introducedmultithreshold graphs as
a generalization of threshold graphs. The threshold number of a graph G = (V , E)

is the minimum positive integer k such that there are k distinct thresholds θ1, . . . , θk
and a weight function w : V → R such that uv ∈ E if and only if the number of
thresholds θi satisfying θi ≤ w(u) + w(v) is odd. Intuitively, the thresholds break the
real line into “yes” and “no” regions such that two vertices are adjacent if and only
if the sum of their weights belongs to a yes region. Clearly, a graph has threshold
number 1 if and only if it is a threshold graph and has threshold number at most 2 if
and only if it is a double-threshold graph. They showed that every graph has threshold
number, and asked some questions including the complexity for recognizing double-
threshold graphs. Puleo [18] showed that there is no single choice of three thresholds
that can represent all graphs of threshold number at most 3. Jamison and Sprague [11]
later focused on double-threshold graphs and showed that all double-threshold graphs
are permutation graphs and that the bipartite double-threshold graphs are exactly the
bipartite permutation graphs. Our new characterization is closely related to these facts
and our algorithm uses them.

Pairwise compatibility graphsMotivated by uniform sampling fromphylogenetic trees
in bioinformatics, Kearney, Munro, and Phillips [13] defined pairwise compatibility
graphs. A graph G = (V , E) is a pairwise compatibility graph if there exists a
quadruple (T , w, lb, ub), where T is a tree, w : E(T ) → R, and lb,ub ∈ R, such
that the set of leaves in T coincides with V and uv ∈ E if and only if the (weighted)
distance dT (u, v) between u and v in T satisfies lb ≤ dT (u, v) ≤ ub. Since its
introduction, several authors have studied properties of pairwise compatibility graphs,
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but the existence of a polynomial-time recognition algorithm for that graph class has
been open. The survey article by Calamoneri and Sinaimeri [4] proposed to look at the
class of pairwise compatibility graphs defined on stars (i.e., star pairwise compatibility
graphs), and asked for a characterization of star pairwise compatibility graphs. As we
will see later, the star pairwise compatibility graphs are precisely the double-threshold
graphs (see Observation 2.2).

Polynomial-time recognition of double-threshold graphs Xiao and Nagamochi [26]
solved the open problem of Calamoneri and Sinaimeri [4] by giving a vertex-ordering
characterization and an O(n3m)-time recognition algorithm for star pairwise compat-
ibility graphs, where n anm are the numbers of vertices and edges, respectively. Their
result also answered the question by Jamison and Sprague [12] about the recognition
of double-threshold graphs by the equivalence of the graph classes. In this paper, we
further improve the running time to O(m + n).

Other generalizations of threshold graphs There are many other generalizations of
threshold graphs such as bithreshold graphs [8], threshold signed graphs [3], threshold
tolerance graphs [17], quasi-threshold graphs (also known as trivially perfect graphs)
[27], weakly threshold graphs [1], paired threshold graphs [20], and mock threshold
graphs [2]. We omit the definitions of these graph classes and only note that some
small graphs show that these classes are incomparable to the class of double-threshold
graphs (e.g., 3K2 and the bull for bithreshold graphs, 3K2 and the bull for threshold
signed graphs, 2K2 and the bull for threshold tolerance graphs, C4 and 2K3 for quasi-
threshold graphs, 2K2 and the bull for weakly threshold graphs, C4 and the bull for
paired threshold graphs, K3 ∪ C4 and the bull for mock threshold graphs1).

Note that the concept of double-threshold digraphs [7] is concerned with directed
acyclic graphs defined from a generalization of semiorders involving two thresholds
and not related to threshold graphs or double-threshold graphs.

Organization of the paperWefirst review in Sect. 2 some known relationships between
double-threshold graphs and permutation graphs, and then show that connected bipar-
tite permutation graphs admit representations with some restrictions that we use in
subsequent sections. In Sect. 3, which is the main body of this paper, we give a new
characterization of double-threshold graphs. Using the characterization, we present in
Sect. 4 a simple linear-time algorithm for recognizing double-threshold graphs.

Graph classes In Fig. 1, we summarize the inclusion relations among some of the
graph classes mentioned so far. We can see that the class of double-threshold graphs
connects several other graph classes studied before.

2 Preliminaries

All graphs in this paper are undirected, simple, and finite. A graph G is given by the
pair of its vertex set V and its edge set E as G = (V , E). The vertex set and the edge

1 The symbols Kn and Cn denote the complete graph and the cycle of n vertices, respectively. The disjoint
union of two graphs G and H is denoted by G∪H . For a graph G and a positive integer k, kG is the disjoint
union of k copies of G. The bull is a five-vertex path with an additional edge connecting the 2nd and 4th
vertices. It is known that the bull is not a double-threshold graph [11].
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permutation threshold ∩ threshold pairwise compatibilitybipartite

bipartite permutation

bipartite double-threshold =
threshold

star pairwise compatibility

double-threshold =

Fig. 1 The hierarchy of graph classes mentioned in the introduction. The class of the edge-intersections of
two threshold graphs is abbreviated as threshold∩ threshold. A line segment between two classes indicates
that the one below is a subclass of the one above

set of G are often denoted by V (G) and E(G), respectively. For a vertex v in a graph
G = (V , E), its neighborhood is the set of vertices that are adjacent to v, and denoted
by NG(v) = {u | uv ∈ E}. When the graph G is clear from the context, we often
omit the subscript. A linear ordering ≺ on a set S with |S| = n can be represented by
a sequence 〈s1, s2, . . . , sn〉 of the elements in S, in which si ≺ s j if and only if i < j .
With abuse of notation, we sometimes write ≺ = 〈s1, s2, . . . , sn〉.

2.1 Double-Threshold Graphs

A graph G = (V , E) is a threshold graph if there exist a vertex-weight function
w : V → R and a real number lb ∈ R with the following property:

uv ∈ E ⇐⇒ lb ≤ w(u) + w(v).

AgraphG = (V , E) is a double-threshold graph if there exist a vertex-weight function
w : V → R and two real numbers lb,ub ∈ R with the following property:

uv ∈ E ⇐⇒ lb ≤ w(u) + w(v) ≤ ub.

Then, we say that the double-threshold graph G is defined by w, lb and ub.
Jamison and Sprague [12] showed that we can use any values as lb and ub for

defining a double-threshold graph and that we do not have to consider degenerated
cases, where some vertices have the same weight or some weight sum equals to the
lower or upper bound.

Lemma 2.1 [12] Let G = (V , E) be a double-threshold graph. For every pair
lb,ub ∈ R with lb < ub, there exists w : V → R defining G with lb and ub
such that w(u) �= w(v) if u �= v, and w(u) + w(v) /∈ {lb,ub} for all (u, v) ∈ V 2.

Every threshold graph is a double-threshold graph as one can set a dummy upper
bound ub > max{w(u) + w(v) | u, v ∈ V }. From the definition of double-threshold
graphs, we can easily see that they coincidewith the star pairwise compatibility graphs.
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Fig. 2 (Left) A double-threshold graph. Theweight of each vertex is given asw(a) = 1,w(b) = 3,w(c) = 5,
and w(d) = 7; the lower bound is lb = 4 and the upper bound is ub = 8. (Right) The slab representation
of the graph. A white dot represents the point (w(u),w(v)) for distinct vertices u, v, and a cross represents
the point (w(v),w(v)) for a vertex v. Two distinct vertices u and v are joined by an edge if and only if the
corresponding white dot lies in the gray slab

Observation 2.2 A graph is a double-threshold graph if and only if it is a star pairwise
compatibility graph.

Proof Let G = (V , E) be a double-threshold graph defined by w : V → R and
lb,ub ∈ R. We construct an edge-weighted star S with the center c and the leaf set
V such that the weight w′(vc) of each edge vc ∈ E(S) is w(v). Then, G is the star
pairwise compatibility graph defined by (S,w′,lb,ub).

Let G = (V , E) be a star pairwise compatibility graph defined by (S,w,lb,ub),
where the star S has c as its center. For each v ∈ V , we set w′(v) = w(vc). Then, G
is the double-threshold graph defined by w′, lb, and ub. ��

Observation 2.2 allows us to state the following useful property shown by Xiao and
Nagamochi [26] in terms of double-threshold graphs.

Lemma 2.3 [26] A graph is a double-threshold graph if and only if it contains at most
one non-bipartite component and all components are double-threshold graphs.

The following simple observation is useful when we conduct a detailed analysis on
a specific triple w, lb, ub defining a double-threshold graph.

Observation 2.4 Let G = (V , E) be a double-threshold graph defined by w : V → R

and lb,ub ∈ R. If w(x) ≤ w(y) ≤ w(z) and xy, yz ∈ E hold for distinct vertices
x, y, z ∈ V , then xz ∈ E.

Proof Since lb ≤ w(x)+w(y) ≤ w(x)+w(z) ≤ w(y)+w(z) ≤ ub, we have xz ∈ E .
��

The definition of double-threshold graphs can be understood visually in the plane,
by its so called slab representation. See Fig. 2 for an example. In the xy-plane, we
consider the slab defined by {(x, y) | lb ≤ x + y ≤ ub} that is illustrated in gray.
Then, two vertices u, v ∈ V are joined by an edge if and only if the point (w(u),w(v))

lies in the slab.
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Fig. 3 An example of a
permutation diagram. (Left) A
permutation graph G. (Right) A
permutation diagram that
represents G
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a b c d e

c e a d b

a

b

cd

e

2.2 Permutation Graphs

A graph G = (V , E) is a permutation graph if there exist linear orderings ≺1 and ≺2
on V with the following property:

uv ∈ E ⇐⇒ (u ≺1 v and v ≺2 u) or (u ≺2 v and v ≺1 u). (1)

A graph is a bipartite permutation graph if it is a bipartite graph and a permutation
graph. It is known that every permutation graph admits a transitive orientation [6],
which gives a direction to each edge in such a way that the existence of directed edges
from x to y and from y to z implies a directed edge from x to z as well.

Jamison andSprague [11] showed that permutationgraphs andbipartite permutation
graphs have strong connections to double-threshold graphs as follows.

Lemma 2.5 [11] Every double-threshold graph is a permutation graph.

Lemma 2.6 [11] The bipartite double-threshold graphs are exactly the bipartite per-
mutation graphs.

We say that the orderings ≺1 and ≺2 in (1) define the permutation graph G. We
call ≺1 a permutation ordering of G if there exists a linear ordering ≺2 satisfying the
condition above. Since ≺1 and ≺2 play a symmetric role in the definition, ≺2 is also a
permutation ordering of G. Note that for a graph G and a permutation ordering ≺1 of
G, the other ordering≺2 that defines G together with≺1 is uniquely determined. Also
note that if ≺1 and ≺2 define G, then ≺R

1 and ≺R
2 also define G, where ≺R

i denotes
the reversed ordering of ≺i .

We often represent a permutation graph with a permutation diagram, which is
drawn as follows (see Fig. 3 for an illustration). Imagine two horizontal parallel lines
�1 and �2 on the plane. Then, we place the vertices in V on �1 from left to right
according to the permutation ordering ≺1 as distinct points, and similarly place the
vertices in V on �2 from left to right according to ≺2 as distinct points. The positions
of v ∈ V can be represented by x-coordinates on �1 and �2, which are denoted
by x1(v) and x2(v), respectively. We connect the two points representing the same
vertex with a line segment. The process results in a diagram (called a permutation
diagram) with |V | line segments. By definition, uv ∈ E if and only if the line segments
representing u and v cross in the permutation diagram, which is equivalent to the
inequality (x1(u) − x1(v))(x2(u) − x2(v)) < 0.
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�1

�2

�1

�2

Fig. 4 An illustration of Lemma 2.9. (Left) A permutation diagram of a bipartite permutation graph G =
(X , Y ; E). The vertices in X are represented by blue segments, and the vertices in Y are represented by red
segments. (Right) A permutation diagram that represents G obtained by Lemma 2.9

Conversely, from a permutation diagram of G, we can extract linear orderings ≺1
and ≺2 as

x1(u) < x1(v) ⇐⇒ u ≺1 v,

x2(u) < x2(v) ⇐⇒ u ≺2 v.

When those conditions are satisfied, we say that the orderings of the x-coordinates on
�1 and �2 are consistent with the linear orderings ≺1 and ≺2, respectively.

Although a permutation graph may have an exponential number of permutation
orderings, it is essentially unique for a connected bipartite permutation graph in the
sense of Lemma 2.7 below. For a graph G = (V , E), linear orderings 〈v1, . . . , vn〉
and 〈v′

1, . . . , v
′
n〉 on V are neighborhood-equivalent if N (vi ) = N (v′

i ) for all i .

Lemma 2.7 [9] Let G be a connected bipartite permutation graph defined by ≺1 and
≺2. Then, every permutation ordering of G is neighborhood-equivalent to ≺1, ≺2,
≺R
1 , or ≺R

2 .

Abipartite graph (X ,Y ; E) is a unit interval bigraph if there is a set of unit intervals
{Iv = [lv, lv + 1] | v ∈ X ∪ Y } such that xy ∈ E if and only if Ix ∩ Iy �= ∅ for x ∈ X
and y ∈ Y . The class of unit interval bigraphs is known to be equal to the class of
bipartite permutation graphs.

Proposition 2.8 [10,21,25] A graph is a bipartite permutation graph if and only if it
is a unit interval bigraph.

The following lemma shows that a bipartite permutation graph can be represented
by a permutation diagram with the special property that the segments representing
vertices of the same set of the bipartition are parallel. An illustration is given in Fig. 4.

Lemma 2.9 Let G = (X ,Y ; E) be a bipartite permutation graph. Then, G can be
represented by a permutation diagram in which x2(x) = x1(x) + 1 for x ∈ X and
x2(y) = x1(y) − 1 for y ∈ Y .

Proof By Proposition 2.8, there is a set of unit intervals {Iv = [lv, lv +1] | v ∈ X ∪Y }
such that for x ∈ X and y ∈ Y , xy ∈ E if and only if Ix ∩ Iy �= ∅. We can assume that
all endpoints of the intervals are distinct; that is, lu /∈ {lv, lv + 1} for all u, v ∈ X ∪ Y
with u �= v [25]. For each x ∈ X , we set x1(x) = lx and x2(x) = lx + 1. For each
y ∈ Y , we set x1(y) = ly +1 and x2(y) = ly . It suffices to show that this permutation
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diagram represents G. Observe that line segments corresponding to vertices from the
same set, X or Y , are parallel and thus do not cross. For x ∈ X and y ∈ Y , we have

Ix ∩ Iy �= ∅ ⇐⇒ |lx − ly | < 1 (∵ all endpoints are distinct)

⇐⇒ lx < ly + 1 and ly < lx + 1

⇐⇒ x1(x) < x1(y) and x2(y) < x2(x) (∵ x ∈ X , y ∈ Y )

⇐⇒ (x1(x) − x1(y))(x2(x) − x2(y)) < 0.

The⇐direction of the last equivalence holds sincex1(x) < x2(x) andx1(y) > x2(y).
Therefore, we conclude that the diagram represents G. ��

We can show that for every permutation ordering of a connected bipartite permuta-
tion graph, there exists a permutation diagram consistentwith the ordering that satisfies
the conditions in Lemma 2.9.

Corollary 2.10 Let G = (X ,Y ; E) be a connected bipartite permutation graph defined
by permutation orderings≺1 and≺2. If the first vertex in≺1 belongs to X, then G can
be represented by a permutation diagram such that the orderings of the x-coordinates
on �1 and �2 are consistent with ≺1 and ≺2, respectively, and that x2(x) = x1(x)+ 1
for every x ∈ X and x2(y) = x1(y) − 1 for every y ∈ Y .

Proof Since G is connected, the last vertex in ≺1 belongs to Y , the first vertex in ≺2
belongs to Y , and the last vertex in ≺2 belongs to X .

ByLemma2.9,G canbe representedby apermutationdiagram D′ inwhichx2(x) =
x1(x) + 1 for x ∈ X and x2(y) = x1(y) − 1 for y ∈ Y . Let ≺′

1 and ≺′
2 be the

permutation orderings corresponding to �1 and �2, respectively, in this diagram D′.
Lemma 2.7 and the assumption on the first vertex in≺1 imply that≺1 is neighborhood-
equivalent to ≺′

1 or (≺′
2)

R . We may assume that ≺1 is neighborhood-equivalent to ≺′
1

since otherwise we can rotate the diagram D′ by 180 degrees and get a permutation
diagram of G in which the ordering on �1 is ≺1, x2(x) = x1(x) + 1 for x ∈ X , and
x2(y) = x1(y) − 1 for y ∈ Y .

Now we can construct a desired permutation diagram of G using ≺1 and D′ by
appropriately giving a mapping between segments and vertices. That is, for each
i ∈ {1, . . . , |X ∪ Y |}, we assign the i th vertex in ≺1 to the segment in D′ with the i th
smallest x-coordinate on �1. This new diagram is a permutation diagram ofG since≺1
is neighborhood-equivalent to ≺′

1. Since G and ≺1 uniquely determine the ordering
on �2, the x-coordinates x2 on �2 are consistent with ≺2. ��

3 New Characterization

In this section, we present a new characterization of double-threshold graphs (The-
orem 3.1). This is one of our main results and a key ingredient of the linear-time
algorithm given in the next section. Recall that Lemma 2.6 characterizes the bipartite
double-threshold graphs as the bipartite permutation graphs, which can be recognized
in linear time [22,23]. Thus, we are going to focus on non-bipartite graphs in this
section.
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Fig. 5 An example of an
auxiliary bipartite graph. (Left)
A graph G and M = {e, f }.
(Right) The auxiliary bipartite
graph G′
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Fig. 6 An example of an efficient maximum clique. (Left) A slab representation of a double-threshold
graph G. (Right) The vertices of G are ordered in the increasing order of their weights. The graph G has
two maximum cliques Q1 = {c, e, f , g} and Q2 = {d, e, f , g}. The degree sums are

∑
v∈Q1

degG (v) =
5 + 4 + 4 + 4 = 17, and

∑
v∈Q2

degG (v) = 4 + 4 + 4 + 4 = 16. Therefore, Q2 is the only efficient
maximum clique of G

Let G = (V , E) be a graph. From G and a vertex subset M ⊆ V , we construct an
auxiliary bipartite graph G ′

M = (V ′, E ′) defined as follows (see Fig. 5):

V ′ = {v, v | v ∈ V }, E ′ = {uv | uv ∈ E} ∪ {vv | v ∈ M}.

Note that (V , {v | v ∈ V }) is a bipartition of G ′
M no matter what M is.

An efficient maximum clique K of a graph G is a maximum clique (i.e., a clique of
the maximum size) that minimizes the degree sum

∑
v∈K degG(v). See Fig. 6.

Using these terms, we present a characterization of non-bipartite double-threshold
graphs as follows.

Theorem 3.1 For a non-bipartite graph G, the following are equivalent.

1. G is a double-threshold graph.
2. For every efficient maximum clique M of G, the graph G ′

M is a bipartite permu-
tation graph.

3. For some efficient maximum clique M of G, the graph G ′
M is a bipartite permuta-

tion graph.

The rest of this section is devoted to a proof of Theorem 3.1. The following is a
quick overview of the proof steps (some terms will be defined later).
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1. We first prove the key lemma (Lemma 3.3) ensuring that a graph is a double-
threshold graph if and only if G ′

M is a permutation graph with a “symmetric”
permutation diagram, where M ⊆ V is the set of “mid-weight” vertices.

2. We then show that every efficient maximum clique can be the set of mid-weight
vertices by proving a couple of lemmas (Lemmas 3.4 and 3.6).

3. Next, we show that the symmetry required in the key lemma follows for free if M
is a clique (Lemma 3.10), which is true when we set M to be the set of mid-weight
vertices.

4. Finally, we complete the proof of Theorem 3.1 by putting everything together.

We start with the following simple but useful fact.

Lemma 3.2 For a connected non-bipartite graph G = (V , E) and a vertex subset
M ⊆ V , G ′

M is connected.

Proof For any u, v ∈ V , since G is connected and non-bipartite, G contains both an
odd walk and an even walk from u to v. This shows that G ′

M contains walks from u
to v, from u to v̄, from ū to v, and from ū to v̄. Hence, G ′

M is connected. ��
For the auxiliary graph G ′

M = (V ′, E ′) of G = (V , E), a linear ordering on V ′
represented by 〈w1, w2, . . . , w2n〉 is symmetric if wi = v implies w2n−i+1 = v̄ for
any v ∈ V and any i ∈ {1, 2, . . . , 2n}.
Lemma 3.3 Let G = (V , E) be a non-bipartite graph and M ⊆ V . The following are
equivalent.

1. G is a double-threshold graph defined by w : V → R and lb,ub ∈ R such that
M = {v ∈ V | lb/2 ≤ w(v) ≤ ub/2}.

2. The auxiliary graph G ′
M = (V ′, E ′) can be represented by a permutation diagram

in which both orderings ≺1 and ≺2 are symmetric.

Proof (1 �⇒ 2) An illustration is given in Fig. 7. Let G be a double-threshold
graph defined by w : V → R and lb,ub ∈ R such that M = {v ∈ V | lb/2 ≤
w(v) ≤ ub/2}. By Lemma 2.1, we can assume that lb = 0 and ub = 2, that
w(u) + w(v) /∈ {0, 2} for every (u, v) ∈ V 2, and that w(u) �= w(v) if u �= v. We
construct a permutation diagram of G ′

M as follows. Let �1 and �2 be two horizontal
parallel lines. For each vertex w ∈ V ′, we set the x-coordinates x1(w) and x2(w) on
�1 and �2 as follows: for any v ∈ V ,

x1(v) = w(v) − 1, x1(v̄) = 1 − w(v),

x2(v) = w(v), x2(v̄) = −w(v).

Since w(u) + w(v) /∈ {0, 2} for every (u, v) ∈ V 2 and w(u) �= w(v) if u �= v, the
x-coordinates are distinct on �1 and on �2. By connecting x1(w) and x2(w) with a
line segment for each w ∈ V ′, we get a permutation diagram. The line segments
corresponding to the vertices in V have negative slopes, and the ones corresponding
to the vertices in V ′\V have positive slopes. Thus, for any two vertices u, v ∈ V ,
the line segments corresponding to u and v̄ cross if and only if both x1(u) ≤ x1(v̄)
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and x2(u) ≥ x2(v̄) hold, which is equivalent to 0 ≤ w(u) + w(v) ≤ 2, and thus
to uv̄ ∈ E ′. Similarly, the line segments corresponding to v and v̄ cross if and only
if 0 ≤ 2w(v) ≤ 2, i.e., v ∈ M . This shows that the obtained permutation diagram
representsG ′

M . Let≺1 be the ordering on V ′ defined byx1. Sincex1(v) = −x1(v̄) for
each v ∈ V , ≺1 is symmetric. Similarly, the ordering ≺2 defined by x2 is symmetric.

(2 �⇒ 1) Suppose we are given a permutation diagram of G ′
M in which both

≺1 and ≺2 are symmetric. We may assume by symmetry that the first vertex in ≺1
belongs to V . Since G ′

M is connected by Lemma 3.2, Corollary 2.10 shows that we
can represent G ′

M by a permutation diagram in which the x-coordinates x1 and x2 on
�1 and �2 satisfy that

x2(v) = x1(v) + 1 and x2(v̄) = x1(v̄) − 1 (v ∈ V ) (2)

and that the orderings of the x-coordinates on �1 and �2 are consistent with ≺1 and
≺2, respectively. Since ≺1 is symmetric, if u, v ∈ V are the i th and the j th vertices
in ≺1, then ū, v̄ are the (2n − i + 1)st and the (2n − j + 1)st vertices in ≺1. Since
i < 2n − j + 1 is equivalent to j < 2n − i + 1, we have that u ≺1 v̄ if and only if
v ≺1 ū. As x1 is consistent with ≺1, it holds for u, v ∈ V that x1(u) ≤ x1(v̄) if and
only if x1(v) ≤ x1(ū), and hence

x1(u) ≤ x1(v̄) ⇐⇒ x1(u) + x1(v) ≤ x1(v̄) + x1(ū).

Similarly, we can show that for u, v ∈ V ,

x2(u) ≥ x2(v̄) ⇐⇒ x2(u) + x2(v) ≥ x2(v̄) + x2(ū).

Thus, for any two distinct vertices u, v ∈ V , it holds that

uv ∈ E ⇐⇒ uv̄ ∈ E ′

⇐⇒ x1(u) ≤ x1(v̄) and x2(u) ≥ x2(v̄)

⇐⇒ x1(u) + x1(v) ≤ x1(v̄) + x1(ū) and x2(u) + x2(v) ≥ x2(v̄) + x2(ū).

(3)

For each v ∈ V , define

w(v) = x2(v) − x2(v̄)

2
.

By (2), we can see that (3) is equivalent to

0 ≤ w(u) + w(v) ≤ 2,

which shows that w, lb = 0, and ub = 2 define G. Furthermore, for any v ∈ V ,

v ∈ M ⇐⇒ vv̄ ∈ E ′

⇐⇒ x1(v) ≤ x1(v̄) and x2(v) ≥ x2(v̄)
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Fig. 7 An illustration of (1 �⇒ 2) in Lemma 3.3. (Top left) A double-threshold graph G with M = {d, e}.
The auxiliary bipartite graph G′

M is also depicted. (Top right) A slab representation of G. (Bottom) A
permutation diagram of G′

M as given in the proof

⇐⇒ 0 ≤ w(v) ≤ 1,

which shows that M = {v ∈ V | 0 ≤ w(v) ≤ 1}. ��
To utilize Lemma 3.3, we need to find the set M of mid-weight vertices; that is, the

vertices with weights in the range [lb/2,ub/2]. The first observation is that M has
to be a clique as the weight sum of any two vertices in M is in the range [lb,ub]. In
the following, we show that an efficient maximum clique can be chosen as M . To this
end, we first prove that we only need to consider (inclusion-wise) maximal cliques.

Lemma 3.4 For a connected non-bipartite double-threshold graph G = (V , E), there
exist w : V → R and lb,ub ∈ R defining G such that {v ∈ V | lb/2 ≤ w(v) ≤
ub/2} is a maximal clique of G.

Proof Let G be a non-bipartite double-threshold graph G = (V , E) defined by
w : V → R and lb,ub ∈ R. Let M = {v ∈ V | lb/2 ≤ w(v) ≤ ub/2}. We
choose w, lb, and ub in such a way that for any w′ : V → R and lb′,ub′ ∈ R

defining G, M is not a proper subset of {v ∈ V | lb′/2 ≤ w′(v) ≤ ub′/2}. Sup-
pose to the contrary that M is not a maximal clique of G. Observe that if M = ∅,
then V can be partitioned into two independent sets {v ∈ V | w(v) < lb/2} and
{v ∈ V | w(v) > ub/2}, which is a contradiction to the non-bipartiteness of G.
Hence, M is non-empty.

LetG ′
M be the auxiliary graph constructed fromG andM as before. By Lemma 3.3,

G ′
M has a permutation diagram in which both ≺1 = 〈w1, . . . , w2n〉 and ≺2 =

〈w′
1, . . . , w

′
2n〉 are symmetric. Let M = {v̄ | v ∈ M}. By the definition of G ′

M ,
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M ∪ M induces a complete bipartite graph in G ′
M . By symmetry, we may assume that

M ≺1 M and M ≺2 M . That is, in ≺1 all vertices in M appear before any vertex in
M appears, and in ≺2 all vertices in M appear before any vertex in M appears. Note
that these assumptions imply that for each edge x ȳ ∈ E(G ′

M ), x ≺1 ȳ and ȳ ≺2 x
hold since G ′

M is connected by Lemma 3.2 (see Fig. 8 (Left)).
As M is not a maximal clique in G, there is a vertex v /∈ M such that M ⊆ NG(v).

If v̄ ≺1 v, then we have

M ≺1 v̄ ≺1 v ≺1 M and v̄ ≺2 M ≺2 M ≺2 v (4)

since vv̄ /∈ E(G ′
M ), M ⊆ NG ′

M
(v), and M ⊆ NG ′

M
(v̄). Similarly, if v ≺1 v̄, then we

have

v ≺1 M ≺1 M ≺1 v̄ and M ≺2 v ≺2 v̄ ≺2 M,

or equivalently,

M ≺R
2 v̄ ≺R

2 v ≺R
2 M and v̄ ≺R

1 M ≺R
1 M ≺R

1 v.

Thus, by replacing ≺1 with ≺R
2 and ≺2 with ≺R

1 if necessary, we may assume that
(4) holds (see Fig. 8 (Left)). We further assume that v has the smallest position in ≺1
under these conditions. ��
Claim 3.5 wn+1 = v (and thus wn = v̄).

Proof (Claim 3.5) By the symmetry of 〈w1, . . . , w2n〉, it suffices to show that there is
no vertex x ∈ V such that v̄ ≺1 x ≺1 v. Suppose that such a vertex x exists. In G ′

M ,
x is not adjacent to v̄. This implies that xv /∈ E , and hence x /∈ M . On the other hand,
in G ′

M , x is adjacent to all vertices in M . Thus, we have M ⊆ NG(x). This contradicts
that v has the smallest position in ≺1 under those conditions. ��

Nowwe obtain≺′
1 from≺1 by swapping v and v̄ (see Fig. 8 (Right)). By Claim 3.5,

this new ordering ≺′
1 gives (together with ≺2) the graph obtained from G ′

M by adding
the edge vv̄. Observe that this new graph can be expressed as G ′

M∪{v}. Since ≺′
1 and

≺2 are symmetric, Lemma 3.3 implies that there are w′ : V → R and lb′,ub′ ∈ R

defining G such that {u ∈ V | lb′/2 ≤ w′(u) ≤ ub′/2} = M ∪ {v}. This contradicts
the choice of w, lb, and ub.

We show that every efficient maximum clique can be the set of mid-weight vertices,
given an appropriate choice of w, lb, and ub.

Lemma 3.6 Let G be a non-bipartite double-threshold graph. For every efficient max-
imum clique K of G, there exist w : V → R and lb,ub ∈ R defining G such that
K = {v ∈ V | lb/2 ≤ w(v) ≤ ub/2}.
Proof Let K be an efficient maximum clique of G. By Lemma 2.5, G is a permutation
graph, and thus cannot contain an induced odd cycle of length 5 or more [6]. As G is
non-bipartite, G contains K3. This implies that |K | ≥ 3.

123



1176 Algorithmica (2022) 84:1163–1181

�1 M M

M v

v̄

v̄

v�1 M M

M v

v̄

v̄

v

�2�2

x

M M

Fig. 8 (Left) Relative positions of v, v̄, M , and M . (Right) ≺′
1 is obtained from ≺1 by swapping v and v̄

By Lemma 3.4, there exist w : V → R and lb,ub ∈ R defining G such that M :=
{v ∈ V | lb/2 ≤ w(v) ≤ ub/2} is a maximal clique ofG. Assume that w, lb, and ub
are chosen so that the size of the symmetric difference |M � K | = |M\K | + |K\M |
is minimized. Assume that K �= M since otherwise we are done. This implies that
K � M and K � M as both K and M are maximal cliques. Observe that G − M is
bipartite. This implies that |K\M | ∈ {1, 2} and that K ∩ M �= ∅ as |K | ≥ 3. Since K
is a maximum clique, |M\K | ≤ |K\M | holds.

Let u ∈ K\M . By symmetry, wemay assume that w(u) < lb/2. Note that no other
vertex in K has weight less than lb/2 as K is a clique. Let v ∈ M be a non-neighbor
of u that has the minimum weight among such vertices. Such a vertex exists since M
is a maximal clique. Note that v ∈ M\K .

We now observe that v has the minimum weight in M . If w ∈ M is a non-neighbor
of u, then w(v) ≤ w(w) follows from the definition of v. If w ∈ M is a neighbor
of u, then w(v) < w(w) holds, since otherwise w(u) < lb/2 ≤ w(w) ≤ w(v) and
uw,wv ∈ E imply that uv ∈ E by Observation 2.4.

We are going to show that N (v) = N (u). ��
Claim 3.7 N (u) ∩ {x | w(x) < lb/2} = N (v) ∩ {x | w(x) < lb/2} = ∅.
Proof (Claim 3.7) Since w(u) < lb/2, N (u) ∩ {x | w(x) < lb/2} = ∅. Suppose
to the contrary that v has a neighbor x with w(x) < lb/2. The maximality of M
implies that x has a non-neighbor y ∈ M . Since y ∈ M , w(v) ≤ w(y) holds. However,
w(x) < lb/2 ≤ w(v) ≤ w(y) and xv, vy ∈ E imply xy ∈ E by Observation 2.4. ��
Claim 3.8 N (u) ∩ M = N (v) ∩ M = M\{v}.
Proof (Claim 3.8) Since M is a clique and v ∈ M , we have N (v)∩M = M\{v}. Thus,
the claim is equivalent to M\{v} ⊆ N (u). This holds if M\K = {v}. Assume that
M\K = {v, v′} for some v′ �= v. To show the claim, it suffices to show that uv′ ∈ E .

Since |M\K | ≤ |K\M | ≤ 2, we have K\M = {u, u′} for some u′ �= u. Since
w(u) < lb/2 and uu′ ∈ E , we have w(u′) ≥ lb/2. Moreover since u′ /∈ M , we
have w(u′) > ub/2. Let w ∈ M ∩ K . If w(w) > w(v′), then, by Observation 2.4, we
have u′v, u′v′ ∈ E since w(v) ≤ w(v′) < w(w) ≤ w(u′) and vw, v′w,wu′ ∈ E . This
implies thatM ⊆ N (u′),which contradicts themaximality ofM .Hence,w(w) ≤ w(v′)
holds. This implies by Observation 2.4 that uv′ ∈ E as w(u) ≤ w(w) ≤ w(v′) and
uw,wv′ ∈ E . ��
Claim 3.9 N (u) ∩ {x | w(x) > ub/2} ⊇ N (v) ∩ {x | w(x) > ub/2}.
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Proof (Claim 3.9) Let w ∈ K ∩ M . For z ∈ N (v) with w(z) > ub/2, we have

lb ≤ w(u) + w(w) ≤ w(u) + ub/2 < w(u) + w(z) < lb/2 + w(z) < w(v) + w(z) ≤ ub,

and thus z ∈ N (u) holds. ��
Claims 3.7, 3.8, and 3.9 imply that N (v) ⊆ N (u). To show that N (v) = N (u),

suppose to the contrary that N (v) is a proper subset of N (u). We show that K cannot
be an efficient maximum clique in this case. Let K ′ = K\{u} ∪ {v}. We first argue
that K ′ is a maximum clique. To this end, it suffices to show that K ′ is a clique as
|K ′| = |K |. If K\M = {u}, then K ′ = M is a clique. Assume that K\M = {u, u′} for
some u′ �= u. Since w(u) < lb/2 and u′ ∈ K\M , we have w(u′) > ub/2 as before.
Let w ∈ K ∩ M . Then, vw,wu′ ∈ E . Since w(v) ≤ w(w) ≤ ub/2 < w(u′), we have
vu′ ∈ E by Observation 2.4. Thus, K ′ is a clique. The assumption N (v) � N (u)

implies that degG(v) < degG(u), and thus,

∑

w∈K ′
degG(w) =

(
∑

w∈K
degG(w)

)

− degG(u) + degG(v) <
∑

w∈K
degG(w).

This contradicts that K is efficient. Therefore, we conclude that N (v) = N (u).
Now, we define a weight function w′ : V → R by setting w′(u) = w(v), w′(v) =

w(u), and w′(x) = w(x) for all x ∈ V \{u, v}. Then, w′, lb, and ub define G and
M ′ := {w ∈ V | lb/2 ≤ w′(w) ≤ ub/2} = M ∪ {u}\{v} as N (u) = N (v). This
contradicts the choice of w as |M ′ � K | < |M � K |.

Next, we show that the symmetry required in Lemma 3.3 follows for free when M
is a clique.

Lemma 3.10 Let G = (V , E) be a connected non-bipartite graph and M be a clique
of G. Then, G ′

M is a permutation graph if and only if G ′
M can be represented by a

permutation diagram in which both orderings ≺1 and ≺2 are symmetric.

Proof The if part is trivial. To prove the only-if part, we assume that G ′
M is a permu-

tation graph.
First we observe that we only need to deal with the twin-free case. Assume that

NG ′
M
(u) = NG ′

M
(v) (or equivalently NG ′

M
(ū) = NG ′

M
(v̄)) for some u, v ∈ V , i.e.,

u, v are twins in G ′
M . If G ′

M −{v, v̄} has a permutation diagram in which both permu-
tation orderings≺1 and≺2 are symmetric, then we can obtain symmetric permutation
orderings≺′

1 and≺′
2 ofG

′
M by inserting v right after u, and v̄ right before ū in both≺1

and ≺2. Thus, it suffices to show that G ′
M − {v, v̄} = (G − v)′M\{v} has a permutation

diagram in which both permutation orderings ≺1 and ≺2 are symmetric.
Observe thatG−v might be bipartite, but (G−v)′M\{v} is still connected. Hence, we

can assume in the following that no pair of vertices inG ′
M have the same neighborhood

and that G ′
M is connected (but G might be bipartite). We also assume that |V | ≥ 2

since otherwise the statement is trivially true.
Let≺1 and≺2 be the permutation orderings corresponding to a permutation diagram

of G ′
M . By Lemma 2.7, the assumption of having no twins implies that ≺1, ≺2, ≺R

1 ,
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and ≺R
2 are all the permutation orderings of G ′

M . Since G ′
M is connected, we may

assume that the first vertex in ≺1 belongs to V , the last in ≺1 belongs to V ′\V , the
first in≺2 belongs to V ′\V , and the last vertex in≺2 belongs to V . Let 〈w1, . . . , w2n〉
be the ordering defined by ≺1.

Let ϕ : V ′ → V ′ be a map such that ϕ(v) = v̄ and ϕ(v̄) = v for each v ∈ V . This
map ϕ is an automorphism of G ′

M . Thus, 〈ϕ(w1), . . . , ϕ(w2n)〉 is also a permutation
ordering of G ′

M . Let ≺′ = 〈ϕ(w1), . . . , ϕ(w2n)〉 denote this ordering. Then,

≺′ ∈ {≺1,≺2,≺R
1 ,≺R

2 }.

We claim that ≺′ = ≺R
1 . First, observe that ≺′ /∈ {≺1,≺R

2 } as the first vertex of ≺′
belongs to V ′\V but the first vertices of ≺1 and ≺R

2 belong to V .
Suppose to the contrary that ≺′ = ≺2. Then, for each w ∈ V ′, the positions of w

in ≺1 and ϕ(w) in ≺2 (= ≺′) are the same. Thus, wi ≺1 ϕ(wi ) implies ϕ(wi ) ≺2
ϕ(ϕ(wi )) = wi . Hence, we have vv̄ ∈ E(G ′

M ) for all v ∈ V , and thus M = V .
As M is a clique, M = V implies that G is a complete graph K|V | and that G ′

M
is a complete bipartite graph K|V |,|V |. This contradicts the assumption that G ′

M has
no twins as |V | ≥ 2. Therefore, we conclude that ≺′ = ≺R

1 , and in particular that
ϕ(wi ) = w2n−i+1 for each i . This means that wi = v implies w2n−i+1 = v̄ for all
v ∈ V and i ∈ {1, . . . , 2n}. Hence, ≺1 is symmetric. ��

Now we can prove Theorem 3.1 restated below.

Theorem 3.1 For a non-bipartite graph G, the following are equivalent.

1. G is a double-threshold graph.
2. For every efficient maximum clique M of G, the graph G ′

M is a bipartite permu-
tation graph.

3. For some efficient maximum clique M of G, the graph G ′
M is a bipartite permuta-

tion graph.

Proof To show that 1 �⇒ 2, assume thatG is a non-bipartite double-threshold graph.
Let M be an efficient maximum clique of G. By Lemma 3.6, there exist w : V → R

and lb,ub ∈ R defining G such that M = {v ∈ V | lb/2 ≤ w(v) ≤ ub/2}. Now
by Lemma 3.3, G ′

M is a bipartite permutation graph.
The implication 2 �⇒ 3 is trivial.
We now show that 3 �⇒ 1. Assume that for an efficient maximum clique M of a

non-bipartite graph G, the graph G ′
M is a bipartite permutation graph.

Let H be a non-bipartite component of G. Then, H contains an induced odd cycle
of length k ≥ 3. This means that, if H does not contain M , then G ′

M contains an
induced cycle of length 2k ≥ 6. However, this is a contradiction as a permutation
graph cannot contain an induced cycle of length at least 5 [5]. Thus, H contains M .
Also, there is no other non-bipartite component in G as it does not intersect M . Since
H contains M , H ′

M is a component of G ′
M . By Lemma 3.10, H ′

M can be represented
by a permutation diagram in which both ≺1 and ≺2 are symmetric, and thus H is a
double-threshold graph by Lemma 3.3.
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Let B be a bipartite component of G (if one exists). Since B does not intersect M ,
G ′

M contains two isomorphic copies of B as components. Since G ′
M is a permutation

graph, B is a permutation graph too. By Lemma 2.6, B is a double-threshold graph.
Now we know that all components of G are double-threshold graphs and exactly

one of them is non-bipartite. By Lemma 2.3, G is a double-threshold graph. ��

4 Linear-Time Recognition Algorithm

We now present a linear-time recognition algorithm for double-threshold graphs.

Theorem 4.1 There is an O(m + n)-time algorithm that accepts a given graph G =
(V , E) if and only if the graph is a double-threshold graph, where n = |V | and
m = |E |.

Proof Given a graph G, we accept G if and only if

– G is a bipartite permutation graph, or
– G is a non-bipartite permutation graph and G ′

M is a permutation graph, where M
is an efficient maximum clique of G.

By Lemma 2.6 and Theorem 3.1, this algorithm is correct. Thus, it suffices to present
a linear-time implementation of this algorithm.

We first test whether G is a permutation graph in O(m + n) time [16]. If G is not
a permutation graph, we can reject it by Lemma 2.5. Otherwise, we check in linear
time whether G is bipartite. If so, we can accept G by Lemma 2.6.

In the remaining case, G is a non-bipartite permutation graph. Assume for now
that we already have an efficient maximum clique M of G. Since |V (G ′

M )| = 2n and
|E(G ′

M )| = 2m + |M |, we can construct G ′
M and test whether it is a permutation

graph in O(m + n) time. Hence, by Theorem 3.1, it suffices to show that M can be
found in O(m + n) time.

To find an efficient maximum clique of G, we set to each vertex v ∈ V the weight
f (v) = n2−degG(v), and thenfindamaximum-weight cliqueofGwith respect to f . It
is known that a transitive orientation of a permutation graph can be computed in O(m+
n) time [16], and then using the orientation, we can find a maximum-weight clique M
in O(m + n) time [6, pp. 133–134]. We show that M is an efficient maximum clique
of G. Let K be an efficient maximum clique of G. Since

∑
v∈K f (v) ≤ ∑

v∈M f (v),
we have

|K | · n2 −
∑

v∈K
degG(v) ≤ |M | · n2 −

∑

v∈M
degG(v). (5)

Since 0 ≤ ∑
v∈S degG(v) < n2 for any S ⊆ V , it holds that |K | · n2 − n2 < |M | · n2.

This implies that |K | = |M | as |K | ≥ |M |. It follows from (5) that
∑

v∈K degG(v) ≥∑
v∈M degG(v). Therefore, M is an efficient maximum clique. ��
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5 Conclusion

Wehave presented a new characterization of double-threshold graphs and a linear-time
recognition algorithm for them based on the characterization. For a better understand-
ing of this graph class, it would be good to have the list of minimal forbidden induced
subgraphs. We believe that our characterization will be useful for this direction as
well.
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