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Abstract. While structural width parameters (of the input) belong to
the standard toolbox of graph algorithms, it is not the usual case in com-
putational geometry. As a case study we propose a natural extension of
the structural graph parameter of clique-width to geometric point con-
figurations represented by their order type. We study basic properties
of this clique-width notion, and relate it to the monadic second-order
logic of point configurations. As an application, we provide several linear
FPT time algorithms for geometric point problems which are NP-hard
in general, in the special case that the input point set is of bounded
clique-width and the clique-width expression is also given.

Keywords: point configuration · order type · fixed-parameter tractabil-
ity · relational structure · clique-width

1 Introduction

An order type is a useful means to characterize the combinatorial properties of
a finite point configuration in the plane. As introduced in Goodman and Pol-
lack [18,19], the order type of a given set P of points assigns, to each ordered triple
(a, b, c) ∈ P 3 of points, the orientation (either clockwise or counter-clockwise) of
the triangle abc in the plane. More generally, if the point set P is not in a general
position, the triple (a, b, c) may also be collinear (as the natural third option).

Knowing the order type of a point set P is sufficient to determine some useful
combinatorial properties of the geometric set P , such as the convex hull of P and
other. For example, problems of finding convex holes in P or dealing with the
intersection pattern of straight line segments with ends in P , can be solved by
looking only at the order type of P and not on its geometric properties. That is
why order types of points sets are commonly studied from various perspectives
in the field of computational geometry, e.g., [20,2,4,6,17,28,5,3].

On the other hand, knowing the order type of P is obviously not sufficient to
answer questions involving “truly geometric” aspects of P , e.g., distances in P
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(straight-line or geodesic), or angles between the lines or the area of polygons
within P . Nevertheless, even in such geometry-based problems, a more efficient
subroutine computing with the order type of P might speed-up the overall com-
putation, which can be a promising direction for future research.

Unlike in the area of graphs and graph algorithms, where structural width
parameters are very common for many years, at least since the 90’s, no similar
effort can be seen in combinatorial and computational geometry. We would like
to introduce, in this paper, possible combinatorial handling of “structural com-
plexity” of a given point configuration P through defining its “width” (which
we would assume to be small for the studied inputs). Note that, although the
desired width would be a concrete natural number, we will not be interested in
the exact value of it, but instead study whether the width would be bounded or
unbounded on a given class of point configurations.

Inspired by graph structure parameters, the obvious first attempt could be to
extend the traditional notion of tree-width [27]. Such an extension is technically
possible (cf. tree-width of the Gaifman graph of a relational structure), but the
huge problem is that for the tree-width to be upper-bounded, the underlying
structure must be “sparse” – in particular, it can only have a linear number of
edges / tuples. This is clearly not satisfied for the order type in which about half
of all triples are of each orientation.

A better option comes with another traditional, but not so well-known, notion
of clique-width [13]. Clique-width can be bounded even on dense graphs, such as
on cliques, and, similarly to the case of Courcelle’s theorem [10] for tree-width,
clique-width also enjoys some nice metaalgorithmic properties, e.g. [12,16]. This
includes solving any decision (and some optimization as well) problems formu-
lated in the monadic second-order (MSO) logic in linear time. Hence, alongside
with the (Section 2) proposed definition of the clique-width of point configura-
tions, we will introduce the MSO language of their order types and discuss which
problems can be formulated in this language (and hence solved in linear time if
a point set with a decomposition of bounded clique-width is given on the input).

Paper organization. We introduce order types of point configurations, viewed
as ternary relational structures, in Section 2. Then we formally define their
clique-width as that of relational structures. We also show why a technically
simpler-looking “unary” clique-width (which is closer to the traditional graph
clique-width) does not work well for order types.

In Section 3 we speak about MSO logic of order types, and give a basic
overview of its use and expressive power. We restate classical logic results on
clique-width characterization and metaalgorithmics (Theorems 5 and 7). We
continue the study in Section 4 with a few concrete interesting examples of
bounding the clique-width of special point sets (Theorem 8), and of solving some
geometric point problems, which are otherwise NP-hard, for inputs of bounded
clique-width (Theorems 9, 10 and 11).

We conclude with some questions and suggestions in Section 5. Due to space
restrictions, details of the (*)-marked statements are left for the Appendix.
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2 Order Types and Clique-Width

We now recall the notion of an order type in a formal setting, and propose
a definition of the clique-width of (the order type of) a point configuration,
based on a natural specialization of the very general concept of clique-width of
relational structures. A relational structure S = (U, RS

1 , . . . , R
S
a ) of the signature

σ = {R1, . . . , Ra} consists of a universe (a finite set) U and a (finite) list of
relations RS

1 , . . . , R
S
a over U . For instance, for graphs, U = V (G) is the vertex

set and RG
1 = E(G) is the binary symmetric relation of edges of G.

For a set of points P , here always considered in the plane, consider a map
ω : P 3 → {+,−, 0} where ω(a, b, c) = 0 if the triple of points3 a, b, c is collinear,
ω(a, b, c) = + if abc forms a counter-clockwise oriented triangle, and ω(a, b, c) =
− otherwise. Then ω is traditionally called the order type of P , but we, for
technical reasons, prefer defining the order type of P as the ternary relation
Ω ⊆ P 3 such that (a, b, c) ∈ Ω iff ω(a, b, c) = +. Hence we have formally got a
relational structure (P,Ω) of the signature consisting of one ternary symbol. We
will also write Ω(P ) to emphasize that Ω is the order type of the point set P .

Observe that ω(a, b, c) =− iff (b, a, c) ∈ Ω, and ω(a, b, c) = 0 iff (a, b, c), (b, a, c) 6∈
Ω. Hence, the relationΩ fully determines the usual order type of P . Furthermore,
whenever (a, b, c) ∈ Ω, we also have (b, c, a) ∈ Ω and (c, a, b) ∈ Ω, and so we call
the set of triples {(a, b, c), (b, c, a), (c, a, b)} the cyclic closure of (a, b, c) ∈ Ω.

Unary clique-width. We start with the definition of ordinary graph clique-width.
Let a ℓ-expression be an algebraic expression using the following four operations
on vertex-labelled graphs using ℓ labels:
(u1) create a new vertex with single label i;
(u2) take the disjoint union of two labelled graphs;
(u3) add all edges between the vertices of label i and label j (i 6= j); and
(u4) relabel all vertices with label i to label j.

The clique-width cw(G) of a graph G equals the minimum ℓ such that (some
labelling of) G is the value of an ℓ-expression.

The idea behind this definition is that the edge set of a graph G can be
constructed with “bounded amount of information”; this is since we have only a
fixed number of distinct labels and vertices of the same label are further indis-
tinguishable by the expression.

This definition has an immediate generalization to the unary clique-width of
an order type Ω(P ) of a point set P (the adjective referring to the fact that
labels occur as unary predicates in the definition): replace (u3) with
(u3’) add to Ω the cyclic closures of all triples (a, b, c) of distinct elements such

that a is labelled i, b is labelled j and c is labelled k.

Unfortunately, although being very simple, this definition is generally not sat-
isfactory due to problems discussed, e.g., in [1] and specifically illustrated for
order types in our Proposition 4.

3 Note that if any two of a, b, c are not distinct, then we automatically get ω(a, b, c) = 0,
and so when we then shift to seeing an order type as a ternary relation, the involved
triples would always consist of distinct elements (which is technically nice).
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Multi-ary clique-width. While in the case of graphs (whose edge relation is
binary) it is sufficient to consider clique-width expressions with unary labels,
for the ternary order-type relation (as well as for other relational structures of
higher arity) it is generally necessary to allow creation of “intermediate” binary
labels, which are labelled pairs of points of P .

This generalization, which is in agreement with with the treatment by Blu-
mensath and Courcelle [8], leads to the proposed new definition:

Definition 1 (Clique-width of a point configuration). Consider an al-
gebraic expression E using the following five operations on labelled relational
structures (of arity 3 in this case) over point sets:

(w1) create a new point with single label i;
(w2) take the disjoint union of two point sets;
(w3) for every two points, point a of label i and point b of label j (i 6= j), give

the ordered pair (a, b) binary label k;4

(w4) for every three pairwise distinct points, a, b and c such that c is of (unary)
label i, and the pair (a, b) is of (binary) label k, add to the structure the
cyclic closure of the ordered triple (a, b, c),

(w4’) under the same conditions as in (w4), add the cyclic closure of (b, a, c),
(w5) relabel all tuples (singletons or pairs) with label i to label j of equal arity.

The value of such expression E is the ternary relational structure on the points
created by (w1) and consisting of the triples added by (w4) and (w4’). The
auxiliary labels introduced in E are no longer relevant after the evaluation of E .

The width of an expression E constructed as in (w1)–(w5) equals the sum of
arities of the labels occuring in E .5 The clique-width cw(P ) of a point configu-
ration P equals the minimum ℓ such that the order type Ω(P ) of P is the value
of an expression of width at most ℓ.

Remark 2. Notice that Definition 1 does not address the question of realizability
of the relational structure of E as an order type. This is formally right since we
compare the value of constructed E to the order type of an existing point set.

Remark 3. There is one side effect of Definition 1 which also deserves attention.
To give an order type Ω(P ) as a ternary relation, in general, one needs cubic
space to list the counter-clockwise triples. On the other hand, assuming bounded
clique-width of P , the expressions evaluating to Ω(P ) is of linear size which is
much smaller (and comparable to listing the point coordinates). This would
admit the possibility of linear-time algorithms with order types.

For a closer explanation of this concept, we present a basic example:

Proposition 4. (*) Let P be an arbitrary finite set of points in a strictly convex
position.6 Then the clique-width of P is bounded by a constant, while the unary
clique-width of P is unbounded.
4 After this operation, (a, b) may hold more than one binary label, which is ok.
5 Note that this ‘sum of arities’ measure directly generalizes the number ℓ of unary
labels in the expression of (u1)–(u4).

6 That is, in the convex hull of P every point of P is a vertex.
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pj

p1
p2 pi

pi′

pn

Fig. 1. An illustration of the expression (width 4) in Proposition 4. Unary labels 1 are
blue (on p1, . . . , pj−1), the unique label 2 is orange (on pj just added), and the binary
labels 3 are with green arrows. We are just creating the red triple(s) (pi, pi′ , pj).

Proof outline. Let the points of P be p1, p2, . . . , pn in the counter-clockwise order
(starting arbitrarily). We start with p1 and stepwise add p2, p3 etc., changing
previous points to label 1 and the added point created with unique label 2. See
Figure 1. Along the steps, right after the creation of pj , we add the binary label
3 to all pairs labelled 1 and 2, i.e., to (pi, pj) for all i < j, and create the order
triple (pi, pi′ , pj) over all pairs (pi, pi′) of label 3, i, i

′ 6= j and pj of label 2. This
construction witnesses that the clique-width of P is at most 4.

On the other hand, take unary clique-width with ℓ labels, and |P | ≥ 2ℓ+ 1.
An arbitrary ℓ-expression for Ω(P ) must have a union operation (the “last”
one) over two subsets such that one has more than ℓ points, and so two points
a, b of the same label by the pigeon-hole principle. Let c be any point from the
other set. Then there is no way, based on the labels, to distinguish between the
triples (a, b, c) and (b, a, c), which must have the opposite orientations in Ω(P ).
Therefore, the clique-with of P must be at least ℓ+ 1.

Annotated point configurations. In some situations, it may be useful to consider
a point configuration P with additional information (or structure) on the points
or selected pairs of them. An exemplary use case for such annotations is to study
polygons, with P as the vertex set, for which case we are considering an order
type Ω(P ) together with a directed Hamiltonian cycle on P representing the
counter-clockwise boundary of P .

Formally, we simply consider relational structures (over P ) with the signature
consisting of the ternary order type and arbitrary binary or unary symbols.
The clique-width of such an annotated point configuration P is, naturaly, as in
Definition 1 with additional rules that some of the auxiliary unary and binary
labels are at the end turned into the desired unary and binary relations on P .

3 MSO logic of order types

The beginning of this section is devoted to a short introduction of the monadic
second-order (MSO) logic of relational structures. Recall a relational structure
S = (U, RS

1 , . . . , R
S
q ) of the signature σ = {R1, . . . , Rq}.
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The language of MSO logic (of the signature σ) then consists of the standard
propositional logic, quantifiers ∀, ∃ ranging over elements and subsets of the
universe U , and the relational symbols R1, . . . , Rq with the following meaning:
for Ri of arity a, we have S |= Ri(x1, . . . , xa) if and only if (x1, . . . , xa) ∈ R

S
i .

In our specific case of order types Ω(P ) of point sets P , we use the relational
symbol ordccw(x1, x2, x3) for Ω within MSO logic. For example, we can express
that a point y lies strictly in the convex hull of points x1, x2, x3 as follows

[

ordccw(x1, x2, x3) ∧
∧

i=1,2,3
ordccw(xi, xi+1, y)

]

∨ (1)

∨
[

ordccw(x3, x2, x1) ∧
∧

i=1,2,3
ordccw(xi+1, xi, y)

]

,

where x4 is taken as x1.
More generally, we can express that a point y ∈ P belongs to the convex hull

(not necessarily strictly now) of a set X ⊂ P , y 6∈ X , with the following formula:

convhull(X, y) ≡ ∀x, x′ ∈ X
[(

x 6= x′ ∧ ∀z ∈ X¬ ordccw(x′, x, z)
)

(2)

→ ¬ ordccw(x′, x, y)
]

Then we may express, for example, that a set X ⊆ P is a convex hole (i.e., no
point outside of X belongs to the convex hull of X , and no point of X belongs
to the convex hull of the rest of X) with the following:

∀y 6∈X (¬ convhull(X, y)) ∧ ∀Y ⊆X∀z∈X(convhull(Y, z)→ z ∈ Y ) (3)

Further similar examples are easy to come with.

Interpretations and transductions. We sketch the concept of “translating” be-
tween relational structures. Consider relational signatures σ = {R1, . . . , Rq} and
τ = {R′

1, . . . , R
′
t}. A (simple) MSO interpretation of τ-structures in σ-structures

is a t-tuple of MSO formulas Ψ = (ψi : 1 ≤ i ≤ t) of the signature σ, where
the number of free variables of ψi equals the arity ai of R

′
i. A τ -structure T is

interpreted in a σ-structure S via Ψ if T and S share the same ground set U
and, for each 1 ≤ i ≤ t, we have (x1, . . . , xai

) ∈ R′
i
T
⇐⇒ S |= ψi(x1, . . . , xai

).
As a short example, consider a point set P and its mirror image P ′. Then

the order type Ω(P ′) can be interpreted in Ω(P ) simply by taking ψ1(a, b, c) ≡
ordccw(b, a, c). The true power of interpretations will show up in the following.

There is a more general concept of a transduction from a σ-structure S to a
set of τ -structures which, before taking an (MSO) interpretation, has abilities
(in this order of application); (i) to equip S with a fixed number of arbitrary
parameters given as unary labels (because of this, the result of a transduction is
not deterministic, but a set of τ -structures), (ii) to “amplify” the ground set of
S by taking a bounded number of disjoint copies of S, and (iii) to subsequently
restrict the ground set by a unary MSO formula. See the Appendix and/or
Courcelle and Engelfriet [11] for more technical details on transductions.

For a class of relational structures S, the image in a transduction Ψ of the class
S is the union of all transduction results, precisely, Ψ(S) :=

⋃

S∈S
Ψ(S). We say
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that a class S is of bounded clique-width if there exists a constant h such that the
clique-width of every S ∈ S is at most h. Obviously, this is only an asymptotic
concepts which makes sense for infinite classes S and, mainly, it “smoothens”
marginal technical differences between various definitions of clique-width. On
this abstract level, we then obtain the following crucial characterization:

Theorem 5 (Blumensath and Courcelle [8, Proposition 27]). (*) A class
S of finite relational structures (of the same signature) is of bounded clique-width,
if and only if S is contained in the image of an MSO transduction of the class
of finite trees.

For a very informal explanation of the meaning of this statement, we remark
that a tree which is the preimage of the mentioned transduction gives a hier-
archical structure to the clique-width expression in Definition 1. The arbitrary
transduction parameters then determine particular operations (and labelling)
used within the expression, and the formula(s) of a final interpretation roughly
encode Definition 1 itself. No copying (“amplification”) is necessary there.

Since the concept of a transduction is transitive, Theorem 5 implies:

Corollary 6. If a class S of order types (of points) is of bounded clique-width,
then the image of S in an MSO transduction is also of bounded clique-width.

Deciding MSO properties. Perhaps the most important application of bounded
clique-width of point configurations P could be in faster deciding of MSO-
definable properties (and, in greater generality, of some optimization and count-
ing properties as well, see examples in [12]) of the order type of P .

Theorem 7 (Courcelle, Makowsky and Rotics [12], via Theorem 5).
Consider a class S of finite relational structures of signature σ and of bounded
clique-width. For any MSO sentence ϕ of signature σ, if a structure S ∈ S is
given on the input alongside with a clique-width expression of bounded width, then
we can decide in linear time whether S |= ϕ (i.e., whether S has the property ϕ).

Furthermore, under the same assumptions for S and for an MSO formula
ϕ(X) with a free set variable X, we can find in linear time a maximum-cardinality
set X such that S |= ϕ(X), and we can enumerate all sets X such that S |= ϕ(X)
in time which is linear in the input plus output size.

4 Assorted examples

First, to give readers a better feeling about how big the clique-width of “nicely
looking” point sets in the plane can be, we show the following:

Theorem 8. (*) Let P be a point configuration, P0 ⊆ P and d = |P \ P0|.
a) If all points of P0 are collinear, then the clique-width of P is in O(d).
b) Assume the points of P0 are in a strictly convex position. If d ≤ 1, then the
clique-width of P is bounded (by a constant). On the other hand, there exist
examples already with d = 2 and unbounded clique-width of P .
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a)

P0

b)

P0

m n

p0

q0

pk
p3k+1

Fig. 2. Illustrations of the two parts of Theorem 8. (a) Labelling for an expression of
bounded width. (b) A sketch of interpreting a large grid within the point configuration.

Proof outline. In case (a), we first create the d points of P \ P0, each with its
unique label, and their counter-clockwise order triples. See Figure 8(a). Then we
stepwise create the collinear points of P0, ordered from left to right. During the
steps, we add binary labels on P0 between each pair from left to right, and we
also in the right order create the needed order triples having one point in P0 and
two points in P \ P0. At the end, we easily create from the binary labels on P0

the remaining order triples having two points in P0 and one in P \ P0.
In case (b), if d = 1, we construct an expression simlarly as in Proposition 4,

but we simultaneously proceed in two subsequences of the counter-clockwise
perimeter of P0, “opposite” to each other. This process allows us to create also
the order triples involving the sole point of P \ P0 (in “the middle”).

In case (b) with d ≥ 2, we present a construction informally shown in Fig-
ure 8(b). The underlying idea is to construct collinear triples “through” the
points of P \P0, such as the depicted triples p0,m, q0 and q0, n, pk. Since collinear
triples are easy to detect within the order type, we can this way interpret the
binary relation between p0 and pk, and analogously between subsequent p1 and
pk+1 and so on (see the green dashed arrows in the picture). We can also routinely
describe in MSO logic the neighbouring pairs of vertices of a convex hull, see x
and x′ in (2). Consequently, in such a suitably constructed set P , we can inter-
pret an arbitrarily large square grid graph on the points p0, p1, . . . , pk, pk+1, . . ..
Since the squre grid is a folklore basic example of unbounded clique-width [11],
we get from Corollary 6 that the clique-width of such configurations P (with
d = 2) is unbounded.

Some NP-hard problems of point configurations

As already mentioned, perhaps the most interesting computing application of
clique-width of point sets could be in designing algorithms which run in param-
eterized polynomial, or even linear, time with respect to the clique-width as the
parameter. This is especially relevant for problems for which no such algorithms
are believed to exist in general, such as for NP-hard problems.

A parameterized problem has an FPT algorithm if the algorithm runs in
time O(f(d) · nc) where f is an arbitrary computable function of the (fixed)
parameter d, and c is a constant. If c = 1, then we speak about a linear FPT
algorithm (e.g., this is the complete case of Theorem 7).
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Since, except graph clique-width, there is no known FPT algorithm (even
approximation one) for finding a clique-width expression of relational structures
of bounded clique-width, we always must assume that an expression of bounded
width is given alongside with the input point configuration. Notice that for the
above presented examples of small clique-width, the relevant expressions are very
natural and easy to come with. Recall also related Remark 2.

General position subset. This problem asks whether, for a given point set P
and integer k, there exists a subset Q ⊆ P such that no three points of Q are
collinear and |Q| ≥ k. This problem is NP-hard and APX-hard by [15].

Theorem 9. Assume a point set P is given alongside with a clique-width ex-
pression (for Ω(P )) of width d. Then the General position subset problem
of P is solvable in linear FPT time with respect to the parameter d.

Proof. We write the MSO formula

ϕ(X) ≡ ∀x, y, z ∈ X
[

x 6= y 6= z 6= x→
(

ordccw(x, y, z) ∨ ordccw(y, x, z)
)]

to say that no three points inX are collinear, and then compute using Theorem 7
the value maxΩ(P )|=ϕ(X) |X | and compare to k. ⊓⊔

A very similar simple approach works also for the NP-hard problem Hitting

set for induced lines [26], which asks for a minmum-cardinality subset H ⊆
P such that the lines between each pair of points of P all contain a point of H .

Minimum convex partition. Consider a given point set P and an integer k. The
objective of this problem [14] is to decide whether the convex hull conv(P ) of P
can be partitioned into ≤ k convex faces. By a convex face in this situation we
mean the convex hull of a subset Q ⊆ P which is a convex hole of P (recall
(3)). Note that in our definition Q must be strictly convex, but we may as well
consider the non-strict variant in which points of Q are allowed to lie on the
boundary of conv(Q) not in the vertices (and the arguments would be similar).

This problem has been recently claimed NP-hard [21]. Unfortunately, inherent
limitations of MSO logic do not allow us to directly formulate theMinimum con-

vex partition as an MSO optimization problem (one is not allowed to quantify
set families), but we can handle it if we take k as an additional parameter.

Theorem 10. (*) Assume a point set P given alongside with a clique-width
expression of width d. The Minimum convex partition problem of P into ≤ k
convex faces is solvable in linear FPT time with respect to the parameter d+ k.

Proof outline. Let convhole(X) denote the MSO formula (3). We may now write

∃X1, . . . , Xk

[

∧

1≤i≤k
convhole(Xi) ∧ convpartition(X1, . . . , Xk)

]

where the subformula convpartition checks whether the convex hulls of the sets
Xi partition conv(P ). At this point, we know that each Xi is a convex hole in P ,
and we further test for set inclusion and the following two conditions:
– the boundaries of conv(Xi) and conv(Xj) (1 ≤ i < j ≤ k) do not cross, and
– every boundary edge of conv(Xi) is, at the same time, a boundary edge of

exactly one of conv(Xj) (i 6= j) or of conv(P ).
Both conditions can be, although not easily, stated in MSO over order types.
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Fig. 3. Guarding a terrain: the two black square vertices guard the whole terrain, but
the bottom horizontal segment is not seen by any single one of them. To turn this (pair
of guards) into a valid segmented terrain guarding solution, we may add the hollow
point as an additional vertex of the terrain.

Terrain guarding. Another NP-hard problem formulated on point sets [23] is
that of guarding an x-monotone polygonal line L with the given vertex set P . The
objective of guarding is to find a minimum-cardinality vertex guard set G ⊆ P
such that every point ℓ on L is seen by some point g ∈ G “from above the
terrain”, that is, the straight line segment from g to ℓ is never strictly below L.

Note that the point set P (no two points of the same x-coordinate) uniquely
determines the terrain L, with the vertices ordered by their x-coordinates as
P = (p1, p2, . . . , pn). However, the order type Ω(P ) is not (unless we would add
an auxiliary point “at infinity” in the y-axis direction). That is why we assume
the terrain L given as a relational structure consisting of ternary Ω(P ) and the
binary successor relation consisting of the pairs (p1, pi+1) for 1 ≤ i < n.

There is one further complication in regard of the order type Ω(P ) of the
terrain in this problem: if, in an instance, some edge of L is seen together by two
guards, but no one sees the full edge, then knowing only Ω(P ) is not sufficient
to verify validity of such a solution (see Figure 3). That is why we define here
the Segmented terrain guarding variant in which every segment of L must
be seen by a single vertex guard g and, moreover, there is a dedicated subset
P1 ⊆ P such that the guards are selected from g ∈ P1. By a natural subdivision
of terrains in the hard instances of terrain guarding [23] we immediately get that
also Segmented terrain guarding is NP-hard.

Theorem 11. (*) Assume a polygonal terrain L given alongside with a clique-
width expression of width d (defining both the successor relation and the order
type of the vertices, cf. end of Section 2). The Segmented terrain guarding

problem of L is solvable in linear FPT time with respect to the parameter d.

Proof outline. We show a formula seguard(X) stating that every segment of the
terrain L is seen by one point of X . There we verify that, for every successive
pair of vertices (pi, pi+1) of L, there exists x ∈ X such that;

– the triple (x, pi, pi+1) is oriented counter-clockwise (for x to see the segment
pipi+1 “from above”), and

– no “peak” z on L between pi, pi+1 and x is oriented clockwise from (x, pi+1)
(if z is to the left of x) or counter-clockwise from (x, pi) (z to the right of x).

This suffices since L is x-monotone. Then Theorem 7 finishes the argument.

We can similarly handle the orthogonal terrain guarding problem which is
also NP-hard [9]. Another possible extension is to minimize the sum of weighted
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guards, using a weighted variant of Theorem 7 (as in [12]). However, our ap-
proach to terrain guarding cannot be directly extended to the traditional and
more general Art gallery (guarding) problem [24], not even in the adjusted case
when each edge of the polygon is seen by a single vertex guard. This is due to
possible presence of “blind spots” in the interior of the polygon which cannot
be determined knowing just the order type Ω(P ) and the boundary edges of the
polygon on P . Interested readers may find more in the Appendix.

Polygon visibility graph. As we have mentioned the Art gallery problem, we
briefly add that people are also studying problems related to the visibility graph
of a given polygon Q. The visibility graph of Q has the same vertex set as Q
and the edges are those line segments with ends in the vertices of Q which are
disjoint from the complement of the polygon. We give the following toolbox:

Theorem 12. (*) Assume a polygon Q with vertex set P given as a relational
structure consisting of the order type Ω(P ) and the counter-clockwise Hamil-
tonian cycle of the edges of Q. Then the visibility graph of Q has an MSO
interpretation in Q.

5 Conclusions

We managed to show, in this limited space, only few example applications of
bounding the clique-width in efficient parameterized algorithms for geometric
point problems. More examples of similar kind could be added but, as a future
work, we would especially like to investigate possible applications to “metric”
problems. Of course, MSO logic of order types cannot express metric properties
of a point set, but it could be possible that in some problems the enumerative
part of Theorem 7 provided us with a relatively short list of small subconfigu-
rations which would then be processed even by brute force, resulting in a faster
algorithm. For instance, we suggest to investigate in this manner the problem of
a minimum area triangle on a given point set, which is in general 3SUM-hard
(that is, not believed to have a subquadratic algorithm).

Another possible extension would be to consider order types in dimension 3
(or higher), but then even a strictly convex point set could easily have unbounded
clique-width – the quaternary relational structures of such order types just seem
to be too complex even in very simple cases.

Lastly, we mention another very natural question; can the clique-width of
a point configuration be at least approximated by an FPT algorithm with the
width as the fixed parameter? Such an approximation is possible in the case of
graph clique-width [25,22], thanks to the close relation of graph clique-width to
rank-width and to binary matroids. Perhaps the natural correspondence of order
types to oriented matroids could be of some help in this research direction.

Acknowledgments. We would like to thank to Achim Blumensath and Bruno
Courcelle for discussions about the clique-width of relational structures.
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Appendix

A Supplements for Section 2

Proposition 13 (4). Let P be an arbitrary finite set of points in a strictly
convex position. Then the clique-width of P is bounded by a constant, while the
unary clique-width of P is unbounded.

Proof. We show that cw(P ) = 4 by constructing an expression E for Ω = Ω(P )
using unary labels 1 and 2 and a binary label 3. Let the points of P be enumer-
ated as p1, p2, . . . , pn in the counter-clockwise order (the starting point does not
matter). We create a starting point p1 of label 1, and for k = 2, 3, . . . , n = |P |
we iterate this sequence of operations in our expression E :

– (w1) create a new point pk of label 2, and
(w2) make the union of previous {p1, . . . , pk−1} with {pk};

– (w3) for all points a, c such that a is of label 1 and c of label 2, give the pair
(a, c) label 3;

– (w4) for all distinct points a, b, c such that c is of label 2 and (a, b) is of
label 3, add to Ω the cyclic closure of (a, b, c);

– (w5) relabel all points of label 2 to label 1.

Notice that during every iteration, the only point c of the label 2 is c = pk,
and after iteration number k, the binary label 3 is given exactly to pairs (pi, pj)
such that 1 ≤ i < j ≤ k. Hence the operation (w4) adds triples (pi, pj, pk) and
their cyclic closure, exactly when 1 ≤ i < j < k, which all indeed belong to
Ω(P ). On the other hand, in every counter-clockwise triple (pi, pj, pk) of P we
may assume k is the largest index, and then i < j < k by our indexing of P .
So the pair (pi, pj) gets label 3 in above iteration number j, and then the triple
(pi, pj, pk) is added to Ω in iteration number k. Therefore, the value Ω of E
satisfies Ω = Ω(P ).

Next, in order to prove that the unary clique-width of P is unbounded, we
show that every expression for Ω(P ) which uses only unary labels – see (u3’)
– must use at least ⌈n/2⌉ labels where n = |P |. For a contradiction, let E be
an expression with ℓ unary labels whose value is Ω(P ), and assume n ≥ 2ℓ+ 1.
Imagine the last application of the union operation (u2), which makes the union
of the values of subexpressions E1 and E2. Since E1 and E2 together make all
n points of P , one of them, say E1, makes at least ℓ + 1 of the points. By the
pigeon-hole principle, some two distinct points a, b created in E1 end up with
the same label in the value of E1. (We remark that a and b may be created with
different labels, and possibly relabelled several times, but we speak about the
final label they get within E1.)

Let c be any point created by E2. Among the two triples (a, b, c) and (b, a, c),
exactly one is counter-clockwise in P , say (a, b, c). The triple (a, b, c) can be
created only after the union of E1 and E2. However, whenever an application
of the operation (u3’) creates the triple (a, b, c), since the labels of a and b are
already the same and must stay the same, this application adds also the triple
(b, a, c), which is in a contradiction to Ω(P ) being the value of E . ⊓⊔
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B Supplements for Section 3

The concept of transductions. We provide formal details on the concept of an
MSO transduction, which were skipped for simplicity in the main paper.

Consider relational signatures σ = {R1, . . . , Rq} and τ = {R′
1, . . . , R

′
t}. Re-

call that a (simple) MSO interpretation of τ -structures in σ-structures is a t-tuple
of MSO formulas Ψ = (ψi : 1 ≤ i ≤ t) of the signature σ, where the number of
free variables of ψi equals the arity ai of R

′
i.

A basic MSO transduction δ0 of a relational σ-structure S is a (t + 2)-tuple
(χ, ν, ψ1, . . . , ψt) of MSO formulas of the signature σ, where χ is nullary, ν is
unary and ψi are as in an MSO interpretation Ψ above. The outcome of δ0(S)
is undefined (empty) if S 6|= χ, and otherwise, δ0 maps the structure S on the
ground set U into a single τ -structure T on the ground set U ′ = {v ∈ U | S |=
ν(v)}. The relational symbols of τ are interpreted on U ′ as follows; for each

1 ≤ i ≤ t, we have (x1, . . . , xai
) ∈ R′

i
T
⇐⇒ S |= ψi(x1, . . . , xai

).
The m-copy operation maps a structure S on the ground set U to the re-

lational structure Sm on the ground set Um = U × {1, . . . ,m}, such that the
subset U×{i} for each i = 1, 2 . . . ,m induces a copy of the structure S (there are
no tuples between distinct copies). Additionally, Sm is equipped with a binary
relation ∼ and unary relations Q1, . . . , Qm such that; (u, i) ∼ (v, j) for u, v ∈ U
iff u = v, and Qi = {(v, i) : v ∈ U}.

The p-parameter expansion maps a structure S to the set of all structures
which result by an expansion of U by p unary predicates (as arbitrary labels).

Altogether, a many-valued map τ is an MSO transduction if it is δ = δ0 ◦γ ◦ε
where δ0 is a basic MSO transduction, γ is a m-copy operation for some m, and
ε is a p-parameter expansion for some p.

We remark, once again, that the result of a transduction δ of one structure
is generally a set of structures, due to the involved p-parameter expansion. For
a class C of structures, the result of a transduction δ of the class C is the union
of the particular transduction results, precisely, δ(C) :=

⋃

S∈C δ(S).

Theorem 5 and Definition 1. We also add more details about the characteriza-
tion of clique-width in Theorem 5 and the related aspects of Definition 1.

Blumensath and Courcelle in [8, Proposition 27] claim, in particular, logical
equivalence of the following two properties of a class C of relational structures:

– [8, Proposition 27 (iii)], C is the image of an MSO transduction of a regular
subclass of the class of finite trees (implicitly directed and labelled),

– [8, Proposition 27 (ii)], C is the set of values of expressions consisting of
the disjoint union and of all quantifier-free operations over a fixed reference
signature (wrt. C).

The reference signature in the latter point is actually a set of multi-ary labels
used in the expressions whose values form C (hence the direct correspondence
with expressions and their width in Definition 1).

To be formally precise with Theorem 5 and our Corollary 6, we hence need to
formulate the following claim relating the latter point back to our Definition 1:
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Lemma 14. A class S (of signature σ) of order types of point configurations is
of bounded clique-width, if and only if there exists a reference signature τ ⊇ σ,
such that S is the set of values (restricted to signature σ) of expressions consisting
of the disjoint union and of all quantifier-free operations over τ .

Proof. The forward implication is trivial since the operations in Definition 1 are
quantifier-free.

For the backward implication, the following is a key idea: since only quantifier-
free operations are used, the decision on an order-type triple of a member R ∈ S,
say triple (a, b, c), depends only on the labels induced on the subset {a, b, c} of
the ground set of R. This finding inductively extends to all operations in the re-
spective expression E valued R, which lead to a decision on the triple (a, b, c). We
hence focus on a “subexpression” E0 of E which consists only of the operations
having domain in {a, b, c}.

Consider the last disjoint union operation in E0 which, up to symmetry,
made a disjoint union of substructures on {a, b} and {c}. The final decision on
(a, b, c) depends only on the labels on {a, b} and on {c} just before the union
operation (further relabellings cannot bring new piece of information). Hence
we can encode the information leading to a decision on (a, b, c) in a unary label
on c and a binary label on (a, b) (or symmetrically on (b, a)). Recursively, we
argue that binary labels on (a, b) depend only on the unary labels of a and b.
Therefore, operations as in Definition 1 are sufficient to construct the considered
order-type structure R under suitable signature. ⊓⊔

C Supplements for Section 4

Theorem 15 (8). Let P be a point configuration, P0 ⊆ P and d = |P \ P0|.
a) If all points of P0 are collinear, then the clique-width of P is in O(d).
b) Assume the points of P0 are in a strictly convex position. If d ≤ 1, then the
clique-width of P is bounded (by a constant). On the other hand, there exist
examples already with d = 2 and unbounded clique-width of P .

Proof. (a) We show that cw(P ) = d + 8 by constructing an expression Ea for
Ωa = Ω(P ) using d + 2 unary labels and three binary labels. See Figure 8(a).
We choose a direction of the line ℓ0 through P0 and enumerate the points of P0

in the direction of ℓ0 as p1, p2, . . . , pn, and the points of P \ P0 as q1, . . . , qd.
As for the expression Ea, we first create independently all points q1, . . . , qd,

each with its own unique label. Then we use auxiliary two binary labels to add
the needed order triples for them, based on the unique unary labels.

In the second stage, we create the points p1, p2, . . . , pn, one by one, at step
i assuming that p1, . . . , pi−1 are labelled 1 and new pi gets label 2. At this step
we give binary label 3 to all pairs which are of labels 1 and 2 in this order (that
is, to the pairs (pj , pi) for all j < i), and we also add to Ωa all needed order
triples involving pi and two points of P \ P0 (since we again have unique labels
for such triples).
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In the third final stage, we add the order triples (qk, pj , pi), such that (pj , pi)
is of the binary label 3 and qk (which still holds its unique label) is in the counter-
clockwise orientation from the line ℓ0. We analogously add the triples (qk, pi, pj)
if qk is clockwise from ℓ0.

(b) Case of d = 1. We enumerate the points of P0 in the clockwise orientation
as p1, p2, . . . , pn. Let P \P0 = {m}. Let k be the least index such that (pi,m, pk)
is counter-clockwise. We denote by q1 = pi, q2 = pi+1, . . . We now use the
same construction of an expression as in the proof of Proposition 4, but now
simultaneously applied to p1, p2, . . . and to q1, q2, . . . such that we always process
together pi and qj of the least index such that (pi,m, qj) stays counter-clockwise.
This results in an expression of width 8 which correctly adds also the order triples
involving the “middle” point m.

(b) Case of d = 2. We give a construction, sketched in Figure 8(b), of such an
order type of unbounded clique-width. Consider the points of P\P0 = {m,n} and
the points of P0 named in the counter-clockwise direction p0, p1, . . . , q0, q1, . . .We
choose an arbitrary k and place the points of P0 on the convex hull such that
we have collinear triples (pi,m, qi) and (pi+k, n, qi) for i = 0, 1, 2, . . . , k2 − 1. No
other triples in the construction are collinear.

Within the order type Ω(P ), we can uniquely identify with MSO the points
m,n – as those two belonging to the convex hull of the remaining points. We
can then write formulas collin(x, y, z) ≡ ¬ ordccw(x, y, z) ∧ ¬ ordccw(y, x, z),
and γk(x, y) ≡ ∃z collin(x,m, z) ∧ collin(y, n, z). Then γk relates pi to pj (i.e.,
Ω(P ) |= γk(pi, pj)∨γk(pj , pi) ) if and only if j = i+ k or vice versa. We can also
in MSO describe the successor relation on the boundary of the convex hull of
P0, that is the pairs (pi, pi+1), cf. (2). In this way we get an MSO interpretation
of the k × k square grid graph in Ω(P ).

Consequently, in such a suitably constructed set P , we can interpret an ar-
bitrarily large square grid graph on the vertex set {p0, p1, . . . , pk2−1}. Since the
squre grid is a folklore basic example of unbounded clique-width [11], we get
from Corollary 6 that the clique-width of such configurations P (with d = 2) is
unbounded. ⊓⊔

Theorem 16 (10). Assume a point set P given alongside with a clique-width
expression of width d. The Minimum convex partition problem of P into ≤ k
convex faces is solvable in linear FPT time with respect to the parameter d+ k.

Proof. Let convhole(X) denote the MSO formula (3). We describe the existence
of a partition into k convex faces as follows

∃X1, . . . , Xk

[

∧

1≤i≤k
convhole(Xi) ∧ convpartition(X1, . . . , Xk)

]

where the subformula convpartition checks whether the convex hulls of the sets
Xi partition conv(P ). For the latter, we will test the following three conditions:

– for 1 ≤ i, j ≤ k, i 6= j, we have Xi 6⊆ Xj ,
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– the boundaries of the polygons conv(Xi) and conv(Xj) do not cross (neither
in a vertex, nor in the interior of an edge), and

– every boundary edge of each conv(Xi) is, at the same time, a boundary edge
of exactly one other of conv(Xj) or of conv(P ).

We hence first need to define in MSO logic when two points x, y of a strictly
convex set Y ⊆ P form a boundary edge of conv(Y ) in the counter-clockwise
orientation from x to y. Analogously to (2), we write this as

bdedge(Y, x, y) ≡ x, y ∈ Y ∧ x 6= y ∧ ∀z
[

(z ∈ Y ∧ z 6= x, y)→ ordccw(x, y, z)
]

.

Second, we define in MSO the fact that two straight line segments, xx′ and
yy′ with distinct ends, cross each other in an interior point of both;

ecross(x, x′, y, y′) ≡
(

ordccw(x, y, y′) 6←→ ordccw(x′, y, y′)
)

∧
(

ordccw(y, x, x′) 6←→ ordccw(y′, x, x′)
)

.

The rest of the definition of convpartition is a routine combination of the pre-
sented MSO formulas.

Finally, we finish by an application of the decision version of Theorem 7. ⊓⊔

Theorem 17 (11). Assume a polygonal terrain L given alongside with a clique-
width expression of width d (defining both the successor relation and the order
type of the vertices, cf. end of Section 2). The Segmented terrain guarding

problem of L is solvable in linear FPT time with respect to the parameter d.

Proof. Formally, we view L as a relational structure on the ground set P , over
a vocabulary with three relations; ternary ordccw ⊆ P 3, binary terredge ⊆ P 2

and unary canguard ⊆ P . As before, ordccw = Ω(P ) is interpreted as the order
type of P , and terredge is interpreted as the successive pairs in the left-to-right
ordering of points of P on L. Let terredge∗ denote the transitive closure of the
successor relation terredge, which is easily expressed in MSO logic. Lastly, unary
canguard is interpreted as the given subset P1 ⊆ P of allowable guard vertices.

We construct a formula seguard(X) stating that every segment yy′ of the
terrain L is seen by a single vertex guard x of X , as follows

∀y, y′
[

terredge(y, y′)→ ∃x ∈ X
(

ordccw(x, y, y′) ∧ nopeak(x, y, y′)
)]

.

The part ordccw(x, y, y′) certifies that the segment yy′ of the polygonal line L
is (potentially) seen “from above” by a guard at x. The formula nopeak(x, y, y′)
then states that no part (“peak” z) of the terrain L between a guard at x and
the segment yy′ blocks the visibility, written as

∀z
[(

terredge(y, y′) ∧ terredge∗(y′, z) ∧ terredge∗(z, x)
)

→ ¬ ordccw(y′, x, z)
]

∧ ∀z
[(

terredge(y, y′) ∧ terredge∗(x, z) ∧ terredge∗(z, y)
)

→ ¬ ordccw(x, y, z)
]

.

We then formulate seguard(X)∧∀x ∈ X canguard(x) to say that a guard set
X is a valid solution. The optimization version (finding min-cardinaluty X) of
Theorem 7 finishes the proof. ⊓⊔
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Fig. 4. Guarding an art gallery: the four black vertex guards see all edges of the
depicted polygon (each edge seen by a single guard), and 4 is the obvious necessary
minimum. However, knowing only the order type of the polygon vertices, we cannot
say whether there is a “blind spot” in the middle of the polygon (the depicted dotted
spot) or not.

Note on the Art gallery problem. We also briefly explain, why our approach
to solving terrain guarding in Theorem 11 cannot be directly extended to the
traditional and more general Art gallery (guarding) problem [24], not even in the
adjusted case when each edge of the polygon is seen by a single vertex guard.

When “guarding a terrain”, the definition requires the guard set to see all
points of the polygonal line defining that terrain (and then it comes for free
that the guards also see every point “above” the terrain). On the other hand,
the usual definition of the Art gallery problem requires the guards to see every
interior point of the polygon in addition to all its boundary points. This as-
pect is important, since observing all boundary points does not exclude possible
presence of “blind spots” in the interior of the polygon.

With a simple example in Figure 4, we show that, even in our adjusted
setting in which every boundary edge must be seen by a single guard, we cannot
determine whether the interior of the polygon is guarded knowing just the order
type Ω(P ).

Theorem 18 (12). Assume a polygon Q with vertex set P given as a relational
structure consisting of the order type Ω(P ) and the counter-clockwise Hamil-
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tonian cycle of the edges of Q. Then the visibility graph of Q has an MSO
interpretation in Q.

Proof. Formally, we again view Q as a relational structure on the ground set P ,
over a vocabulary with two relations; ternary ordccw = Ω(P ) and binary poledge ⊆
P 2. The relation poledge is interpreted as the edge relation of the counter-
clockwise directed cycle of the polygonal edges of Q. Recall that the visibility
graph of Q has the same vertex set as Q and the edges are those line segments
with ends in the vertices of Q which are disjoint from the complement of Q.

Our aim is to define an MSO formula ε(x, y) such that Q |= ε(x, y) if and
only if {x, y} is an edge of the visibility graph of Q. For that we recall the MSO
formula ecross(x, x′, y, y′) from the proof of Theorem 16 above. Defining ε is
then a routine exercise using the following facts:

– Consider a vertex x ∈ P such that the incoming polygon edge to x is (x1, x)
and the outgoing one is (x, x2). Then for any {x, y} to be a visibility edge
of Q, the point y must lie in the clockwise orientation (non-strictly) from
(x, x1) to (x, x2). Written in MSO; ∃x1, x2

(

poledge(x1, x)∧poledge(x, x2)∧

¬ ordccw(x, x1, y) ∧ ¬ ordccw(x, y, x2)
)

.
– For {x, y} to be a visibility edge of Q, no polygon edge of Qmay strictly cross

the line segment xy. That is; ∀z1, z2
(

poledge(z1, z2)→ ¬ ecross(x, y, z1, z2)
)

.
– Conversely, if the previous two conditions are satisfied for each of x and y,

then {x, y} is a visibility edge of Q. ⊓⊔
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