Skip to main content

Deep Hierarchical Attention Flow for Visual Commonsense Reasoning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12430))

Abstract

Visual Commonsense Reasoning (VCR) requires a thoroughly understanding general information connecting language and vision, as well as the background world knowledge. In this paper, we introduce a novel yet powerful deep hierarchical attention flow framework, which takes full advantage of text information in the query and candidate responses to perform reasoning over the image. Moreover, inspired by the success of machine reading comprehension, we also model the correlation among candidate responses to obtain better response representations. Extensive quantitative and qualitative experiments are conducted to evaluate the proposed model. Empirical results on the benchmark VCR1.0 show that the proposed model outperforms existing strong baselines, which demonstrates the effectiveness of our method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  2. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. CoRR (2016)

    Google Scholar 

  3. Benyounes, H., Cadene, R., Cord, M., Thome, N.: MUTAN: multimodal tucker fusion for visual question answering. arXiv: Computer Vision and Pattern Recognition (2017)

  4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  5. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  8. Jabri, A., Joulin, A., van der Maaten, L.: Revisiting visual question answering baselines. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 727–739. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_44

    Chapter  Google Scholar 

  9. Jawahar, G., Sagot, B., Seddah, D.: What does BERT learn about the structure of language? In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3651–3657. Association for Computational Linguistics, Florence, July 2019

    Google Scholar 

  10. Kim, H., Bansal, M.: Improving visual question answering by referring to generated paragraph captions. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3606–3612. Association for Computational Linguistics, Florence, July 2019

    Google Scholar 

  11. Kim, J., On, K.W., Lim, W., Kim, J., Ha, J., Zhang, B.: Hadamard product for low-rank bilinear pooling. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015 (2015). Conference Track Proceedings

    Google Scholar 

  13. Luong, M., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. CoRR (2015)

    Google Scholar 

  14. Nguyen, D.K., Okatani, T.: Improved fusion of visual and language representations by dense symmetric co-attention for visual question answering. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  15. Ren, M., Kiros, R., Zemel, R.: Exploring models and data for image question answering. Litoral Revista De La Poesía Y El Pensamiento, pp. 2953–2961 (2015)

    Google Scholar 

  16. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. CoRR (2017)

    Google Scholar 

  18. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks for reading comprehension and question answering. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 189–198. Association for Computational Linguistics, Vancouver, July 2017

    Google Scholar 

  19. Wang, Y., et al.: Multi-passage machine reading comprehension with cross-passage answer verification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1918–1927. Association for Computational Linguistics, Melbourne, July 2018. https://doi.org/10.18653/v1/P18-1178

  20. Wu, J., Hu, Z., Mooney, R.: Generating question relevant captions to aid visual question answering. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3585–3594. Association for Computational Linguistics, Florence, July 2019

    Google Scholar 

  21. Wu, J., Mooney, R.J.: Self-critical reasoning for robust visual question answering. arXiv: Computer Vision and Pattern Recognition (2019)

  22. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: visual commonsense reasoning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  23. Zhu, H., Wei, F., Qin, B., Liu, T.: Hierarchical attention flow for multiple-choice reading comprehension. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the organizers of NLPCC-2020 and the reviewers for their helpful suggestions. This research work is supported by the National Key Research and Development Program of China under Grant No. 2017YFB1002103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Jian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Y., Jian, P. (2020). Deep Hierarchical Attention Flow for Visual Commonsense Reasoning. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2020. Lecture Notes in Computer Science(), vol 12430. Springer, Cham. https://doi.org/10.1007/978-3-030-60450-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60450-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60449-3

  • Online ISBN: 978-3-030-60450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics