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Abstract. Spoken Language Understanding (SLU) aims to extract struc-
tured semantic representations (e.g., slot-value pairs) from speech recog-
nized texts, which suffers from errors of Automatic Speech Recognition
(ASR). To alleviate the problem caused by ASR-errors, previous works
may apply input adaptations to the speech recognized texts, or correct
ASR errors in predicted values by searching the most similar candidates
in pronunciation. However, these two methods are applied separately and
independently. In this work, we propose a new robust SLU framework to
guide the SLU input adaptation with a rule-based value error recovery
module. The framework consists of a slot tagging model and a rule-based
value error recovery module. We pursue on an adapted slot tagging model
which can extract potential slot-value pairs mentioned in ASR hypothe-
ses and is suitable for the existing value error recovery module. After
the value error recovery, we can achieve a supervision signal (reward) by
comparing refined slot-value pairs with annotations. Since operations of
the value error recovery are non-differentiable, we exploit policy gradient
based Reinforcement Learning (RL) to optimize the SLU model. Exten-
sive experiments on the public CATSLU dataset show the effectiveness
of our proposed approach, which can improve the robustness of SLU and
outperform the baselines by significant margins.

Keywords: Spoken Language Understanding · Robustness · RL

1 Introduction

The Spoken Language Understanding (SLU) module is a key component of Spo-
ken Dialogue System (SDS), parsing user’s utterances into structured semantic
forms. For example, “I want to go to Suzhou not Shanghai” can be parsed into
“{inform(dest=Suzhou), deny(dest=Shanghai)}”. It can be usually formulated
as a sequence labelling problem to extract values (e.g., Suzhou and Shanghai)
for certain semantic slots (attributes, e.g., inform-dest and deny-dest).
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⋆⋆ Lu Chen and Kai Yu are the corresponding authors.
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Fig. 1. An overview of the robust SLU framework, which is composed of two main
components: a slot tagging model and a rule-based value error recovery module. During
evaluation, only ASR hypotheses are fed into the two modules to generate the final
semantic form.

It is crucial for SLU to be robust to speech recognition errors, since ASR-
errors would be propagated to the downstream SLU model. By ignoring ASR-
errors, it promotes rapid development of natural language processing (NLP)
algorithms for SLU [7,16,5,2] where SLU models are trained and evaluated on
manual transcriptions and even natural language texts. Once ASR hypotheses
are used as input for evaluation, it will lead to a sharp decrease in SLU perfor-
mance [20].

ASR-errors may give rise to two issues: 1) inputs for training and evaluation
are mismatched; 2) Sequence labelling models extract values directly from ASR
hypotheses, which may contain wrong words. Previous works try to overcome
these problems in two ways: 1) Adaptive training approaches are introduced
to transfer the SLU model trained on manual transcriptions to ASR hypothe-
ses [18,9]. 2) Other works adopt rule-based post-processing techniques to refine
the predicted values with the most similar candidates in pronunciation [11,13,4].
However, this value error recovery module is usually fixed and independent of
the SLU model.

To overcome the above problems, we propose a new robust SLU framework
to guide the former SLU model trained with a rule-based value error recovery.
As illustrated in Figure 1, it consists of a slot tagging model and a value error
recovery module. The slot tagging model is pre-trained on manual transcriptions,
which considers SLU as a sequence labelling problem. To alleviate the input
mismatched issue, it is adaptively trained on ASR hypotheses. The value error
recovery module is exploited to correct potential ASR-errors in predicted values
of the slot tagging model, which is built upon a pre-defined domain ontology.

However, there are no word-aligned annotations for ASR hypotheses to fine-
tune the slot tagging model. Thus, we indirectly guide the adaptive training of
the slot tagging model on ASR hypotheses by utilizing supervisions of the value
error recovery. Concretely, we can compute a reward by measuring predicted se-
mantic forms after the value error recovery with annotations, and then optimize
the slot tagging model by maximizing the expected reward. Since operations
in the value error recovery are non-differentiable, we use a policy gradient [10]
based reinforcement learning (RL) approach for optimizing.
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Table 1. An example of user utterance (manual transcription and ASR hypothesis)
and its semantic annotations.

x̂ I want to go to Suzhou not Shanghai

x I one goal to Suizhou not Shanghai

y inform(dest=“Suzhou”); deny(dest=“Shanghai”)

ô I[O] want[O] to[O] go[O] to[O] Suzhou[B-inform-dest] not[O] Shanghai[B-deny-dest]

We conduct an empirical study of our proposed method and a set of carefully
selected state-of-the-art baselines on the 1st CATSLU challenge dataset [20],
which is a large-scale Chinese SLU dataset collected from a real-world SDS ap-
plication. Experiment results confirm that our proposed method can outperform
the baselines significantly.

In summary, this paper makes the following contributions:

– To the best of our knowledge, this is the first work to train a slot tagging
model guided by a rule-based value error recovery module. It tends to learn a
robust slot tagging model for easier and more accurate value error recovery.

– We propose to optimize the slot tagging model with indirect supervision
and RL approach, which does not require word-aligned annotations on ASR
hypotheses. Ablation study confirms that RL training can give improvements
even without the value error recovery module.

2 Proposed Method

In this section, we provide details of our proposed robust SLU framework, which
consists of a sequence labelling based slot tagging model and a rule-based value
error recovery (VER) module. To guide the training of the slot tagging model
on ASR hypotheses with the VER, we propose an RL-based training algorithm.

Let x = (x1 · · ·x|x|) and x̂ = (x̂1 · · · x̂|x̂|) denote the ASR 1-best hypothesis
and manual transcription of one utterance respectively. Its semantic representa-
tion (i.e., act(slot=value) triplets) is annotated on x̂. Thus, it is easy to get the
word-level tags on x̂, ô = (ô1 · · · ô|x̂|), which is in Begin/In/Out (BIO) schema
(e.g., O, B-inform-dest, B-deny-dest), as shown in Table 1.

2.1 Slot Tagging Model

For slot tagging, we adopt an encoder-decoder model with focus mechanism [19]
to model the label dependency. A BLSTM encoder reads an input sequence x̂,
and generates the hidden states at the t-th time-step via

ht = [
−→
ht;
←−
ht];

−→
ht = LSTMf(

−−→
ht−1, φ(x̂t));

←−
ht = LSTMb(

←−−
ht+1, φ(x̂t)) (1)

where φ(·) is a word embedding function, [·; ·] denotes vector concatenation,
LSTMf and LSTMb represent the forward and backward LSTMs, respectively.
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Then, an LSTM decoder updates its hidden states at the t-th time-step
recursively by st = LSTM(st−1, [ψ(ôt−1);ht]), where ψ(·) is a label embedding

function, and s0 is initialized with
←−
h 1. Finally, the slot tag ôt is generated by

P (ôt|ô<t; x̂) = Softmax(Wst + b) (2)

where W and b are parameters for the linear output layer.
Following the BIO schema, we can restructure the predicted slot-tag sequence

aligned with the input sequence to obtain a set of act(slot=value) triplets.

2.2 Value Error Recovery (VER) Module

During evaluation, ASR hypotheses are fed into the slot tagging model to get
the act(slot=value) triplets, which may retain ASR errors in the values. Thus, a
value error recovery (VER) module based on a pre-defined domain ontology 1 is
applied to refine wrong values. Li et al. [4] search through the ontology to find
the most similar candidate with minimum edit distance. While the calculation
of the minimum edit distance is time-consuming and hard to be parallelized, we
exploit an N-gram based cosine distance to accelerate this process.

Generally, we define the n-gram set of a word sequence w = (w1, · · · , wT )
as Ngram(w, n) = {(wi, · · · , wi+n−1) | i = {1, · · · , T − n + 1}}. The n-grams
of all values in the domain ontology O constitute a vocabulary, denoted as
Ngram(O, n). Given a predicted semantic triplet a(s = v), where the value v
is a word sequence v = (v1, · · · , vT ). Then, we get a binary-valued feature vec-
tor d′(v) = (dv1 , · · · , d

v
L) for the predicted value v, where L = |Ngram(O, n)|

and dvj = 1{Ngram(O,n)j∈Ngram(v,n)}. Finally, we normalize it to be a unit vector,
d(v) = d′(v)/||d′(v)||.

Based on the domain ontology, there is a value candidate set 2 corresponding
to the act a and slot s, Va,s = (v̄1, · · · , v̄M ), where M is the number of possible
values. Therefore, the value candidate set can be represented as an L×M feature
matrix D(Va,s), the k-th column of which is d(v̄k). We believe that the more n-
grams two values share, the more similar they are. Thus, we calculate the cosine
similarity score between d(v) and each column vector in D(Va,s) as:

simword(v,Va,s) = D(Va,s)
⊤d(v), ∈ R

M (3)

Since ASR tends to produce words similar in pronunciation, we convert word
sequences of values into pronunciation sequences with a pre-defined pronuncia-
tion dictionary. For example, “上海 (Shanghai)” can be converted into “sh ang h
ai”. Therefore, we get another similarity vector by considering the pronunciation
n-grams, denoted as simpron(v,Va,s). The final similarity vector is obtained by
averaging the two vectors, i.e.,

sim(v,Va,s) = λsimword(v,Va,s) + (1− λ)simpron(v,Va,s) (4)

1 All possible value candidates of each slot are provided in the domain ontology.
2 E.g., the value candidate set for slot address can be all available addresses saved in
the database of a dialogue system.
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Algorithm 1 Training algorithm

Input: Manual transcriptions with word-aligned labels Dtscp = {(x̂, ô)}; ASR hy-
potheses with utterance-level labels Dhyp = {(x, y)}; reward function R(·).

Output: Robust slot tagging model Θ
1: Initialize Θ randomly;
2: repeat ⊲ Pre-training stage
3: Sample (x̂, ô) from Dtscp;
4: Update the model: Θ ← Θ − η1∇ΘLtag(Θ);
5: until convergence
6: repeat ⊲ RL-training stage
7: Sample (x, y) from Dhyp;
8: K groups of semantic labels ỹ1, ..., ỹK are generated after beam search and

value error recovery by feeding x;
9: for k = 1, ..., K do

10: Compute reward R(x, y, ỹk) by Eqn.(6);
11: end for

12: Compute policy gradient ∇ΘÊ[R] by Eqn.(7);
13: Update the model: Θ ← Θ + η2∇ΘÊ[R];
14: Sample (x̂, ô) from Dtscp;
15: Update the model: Θ ← Θ − η1∇ΘLtag(Θ);
16: until convergence

where λ is a balancing parameter (0.5 in our experiments). So far, we can easily
find the best alternative value v̄k, where k = argmax(sim(v,Va,s)).

Although some slots have numerous possible values in the domain ontology,
it is much efficient by simply performing matrix multiplication. We also set a
threshold (0.5 in this paper) to reject a bad error recovery.

2.3 Training Procedure

We propose to guide the adaptive training of the slot tagging on ASR hypotheses
with the value error recovery module. It takes two advantages: 1) mitigating
the input mismatch problem of training and testing; 2) not requiring word-
aligned annotations on ASR hypotheses. Meanwhile, it tends to learn a robust
slot tagging model suitable for the value error recovery.

We apply the policy gradient based reinforcement learning (RL) algorithm to
handle non-differentiable operations. To prune the large search space, the model
is pre-trained with annotated transcriptions to bootstrap the RL-training. The
whole training procedure contains two stages, as described below.

Pre-training Let Dtscp = {(x̂, ô)} denote manual transcriptions with aligned
labels. The slot tagging model (let Θ refer to the model parameters) is trained
by minimizing a negative log-likelihood loss:

Ltag(Θ) = −
∑

(x̂,ô)∈Dtscp

logP (ô|x̂;Θ). (5)
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RL-training ASR hypotheses coupled with unaligned labels, Dhyp = {(x, y)},
are utilized for the adaptive training. The slot tagging model, P (o|x;Θ), samples
via beam search to produce K tag sequences, and then K sets of act(slot=value)
triplets. Finally, corrected semantic triplets {ỹk}Kk=1 are generated after VER
module. For each beam, the reward is considered at both triplet-level and utterance-
level:

R(x, y, ỹk) = Rtriplet +Rutt =

(

1−
FP(y, ỹk) + FN(y, ỹk)

| y |

)

+ 1{y=ỹk} (6)

where the first term punishes false-positives (FP) and false-negatives (FN) of
act(slot=value) triplets, and the second term is a binary value indicating whether
the entire triplets of one utterance is predicted correctly.

The model is optimized by maximizing the expected cumulative rewards
using policy gradient descent. The policy gradient can be calculated as:

∇ΘÊ[R] =
1

K

K
∑

k=1

[

R(x, y, ỹk)−B(r)
]

· ∇Θ logP (ỹk|x;Θ) (7)

where B(r) = 1
K

∑K

k=1R(x, y, ỹ
k) is a baseline for reducing the variance of

gradient estimation, obtained by averaging the rewards inside a beam.
In order to stabilize the training process, it is beneficial to train batches with

Dtscp and Dhyp iteratively. The training framework is shown in Algorithm 1.

3 Experiments

3.1 Experimental Setup

We conduct our experiments on the 1st Chinese Audio-Textual Spoken Lan-
guage Understanding Challenge (CATSLU)3 dataset containing four dialogue
domains (map, music, video, weather). The statistics of the CATSLU dataset
are demonstrated in detail in Zhu et al. [20].

Slot tagging is modeled at Chinese character level. The 200-dim char embed-
ding is initialized by pre-training LSTM based bidirectional language models
(biLMs) with zhwiki 4 corpus. LSTMs are single-layer with 256 hidden units.
In the training process, parameters are uniformly sampled within the range of
(−0.2, 0.2). Dropout with a probability of 0.5 is applied to non-recurrent layers.
We choose Adam [3] as our optimizer. For the learning rate, we set η1=1e-3 and
η2=5e-4 fixed during training. The maximum norm for gradient clipping is set
to 5. In the RL-training stage, the beam search sampling size K is set to 10.
In the decoding stage, the beam size is 5. The best model is selected accord-
ing to the performance on the validation set, and we measure both F1-score of
act(slot=value) triplets and utterance-level accuracy.

3 https://sites.google.com/view/CATSLU
4 https://dumps.wikimedia.org/zhwiki/latest

https://sites.google.com/view/CATSLU
https://dumps.wikimedia.org/zhwiki/latest
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3.2 Baselines

We compare the proposed method with strong baselines for robust SLU:

– HD: Hierarchical Decoding model proposed in Zhao et al. [17], which per-
forms slot filling in a generative way with only unaligned data (Dhyp).

– Focus: BLSTM-Focus model as described in section 2.1 for slot tagging.
– UA: Unsupervised Adaptation method [18] utilizes the language modelling

task to transfer the slot tagging model from manual transcriptions to ASR
hypotheses.

– DA: Data Augmentation methods are also involved to predict pseudo labels
aligned with ASR hypotheses; thus the pseudo samples can be exploited to
train a robust slot tagging model. (1) Gen: ASR hypotheses are fed into the
pre-trained slot tagging model to generate pseudo labels. (2) Align: ASR
hypotheses are aligned with manual transcriptions via achieving minimum
edit-distance, and then the aligned labels of words in transcriptions can be
assigned to the corresponding words in ASR hypotheses.

3.3 Main Results

In this section, the main results on the test set compared with the baselines
are demonstrated in Table 2. In the evaluation stage of all baselines and our
approach, VER is applied for post-processing. Lexicon features are added as
additional input features, same as what Li et al. [4] did.

Overall, the SLU models perform better with auxiliary lexicon features. For
basic slot filling models, Focus performs much better than HD, showing that
the sequence labelling based slot tagging model is more generalizable than a
generative model. The results of the oracle experiments suggest that ASR hy-
potheses largely degrade the performance. By adapting to ASR hypotheses, UA

performs slightly better on some domains, but the average result drops instead.
With lexicon features, by augmenting the training data with pseudo aligned hy-
potheses (DA), both Gen and Align can beat the basic model, indicating that
DA methods are beneficial for improving robustness to ASR hypotheses.

With lexicon features, our proposed method outperforms the Focusmodel in
all domains significantly, achieving an average improvement of 0.8% in F1-score
and 1.5% in joint-accuracy, which reveals the benefit of VER guided training.
Our model also surpasses the best baseline (DA-Align), indicating that it is
less effective to merely augment the data with pseudo aligned ASR texts.

We also attempt to employ only transcriptions in training (the second-to-last
row), that is, replace Dhyp (on line 7) with Dtscp in Algorithm 1. The consistent
improvements in all domains compared with Focus prove that the RL loss
benefits the slot tagging. On this basis, adaptively involving the ASR hypotheses
in training further improves the robustness of the SLU model.

We only compare our model with the “System 1” in Li et al. [4] (the top
solution in CATSLU challenge), because their other systems add the validation
set in training and leverage audio information for better results. As shown in the
table, our proposed method achieves higher average F1-score and joint-accuracy.
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Table 2. Main results with or without lexicon features. F1-score(%)/joint-accuracy(%)
on the test set of each domain are reported. In the table, tscp means manual transcrip-
tions while hyp means ASR hypotheses. Our results that significantly outperform the
best baseline are marked by † (p < 0.05) and ‡ (p < 0.01). ⋆ denotes oracle experiments,
in which manual transcriptions are evaluated.

(a) with lexicon features

Models train test map music video weather avg.

HD hyp hyp 87.8/84.2 90.5/82.1 88.7/76.1 89.6/82.4 89.2/81.2

Focus
⋆ tscp tscp 96.4/93.8 97.6/93.3 94.1/85.6 95.5/90.6 95.9/90.8

Focus tscp hyp 89.0/84.9 92.8/84.8 91.5/80.9 92.6/86.7 91.5/84.3

UA tscp+hyp hyp 88.5/85.2 91.8/83.6 91.2/81.2 91.8/84.9 90.9/83.7
DA-Gen tscp+hyp hyp 88.9/85.4 92.2/84.6 92.0/81.4 93.1/87.1 91.5/84.6
DA-Align tscp+hyp hyp 89.1/85.5 93.1/85.7 91.5/80.8 93.1/87.0 91.7/84.7

Li et al. [4] tscp hyp 87.9/83.8 92.7/85.1 92.3/82.6 93.0/86.8 91.5/84.6

Proposed
tscp hyp 89.0/85.3 93.1/85.7 91.9/81.6 93.1/87.6 91.8/85.0

tscp+hyp hyp 90.0/86.7† 93.8/87.0† 92.0/82.0 93.4/87.7 92.3/85.8†

(b) without lexicon features

Models train test map music video weather avg.

HD hyp hyp 87.9/83.5 87.0/74.1 84.0/64.9 89.2/80.0 87.0/75.6

Focus
⋆ tscp tscp 96.4/93.9 96.3/89.4 92.8/81.6 94.7/88.7 95.0/88.4

Focus tscp hyp 89.4/86.1 92.2/83.6 90.2/77.8 92.4/85.7 91.0/83.3

UA tscp+hyp hyp 89.3/86.4 91.9/83.6 90.0/78.4 91.8/85.0 90.8/83.3
DA-Gen tscp+hyp hyp 88.7/85.7 91.4/82.5 90.3/78.2 92.2/85.8 90.6/83.1
DA-Align tscp+hyp hyp 89.3/85.8 92.3/83.6 90.6/77.6 91.8/85.1 91.0/83.0

Proposed
tscp hyp 89.5/86.3 91.8/82.8 90.8/79.0 92.2/86.1 91.1/83.6

tscp+hyp hyp 89.6/86.8† 92.2/83.7 91.2/79.7‡ 92.6/86.2† 91.4/84.1‡

3.4 Ablation Study

Ablation Study of the Slot Tagging Model For slot tagging, there are
other popular methods like BLSTM and BLSTM-CRF [4]. Table 3 shows the
comparison of different slot tagging models. Vanilla BLSTM performs the worst
without modeling label dependencies. Focus can achieve the best results in most
cases, thus we choose Focus as the backbone model. It should be noted that
our proposed framework can be applied to other slot tagging models.

Effect of the Value Error Recovery (VER) Module We apply different
post-processing ways for values to examine the effect of the VER module, as
shown in Table 4. For HD, Focus and DA-Align, only the evaluation stage is
affected by the post-processing. Results show that it is beneficial to delete invalid
triplets (i.e., out of the domain ontology) while finding proper value alternative
via the VER module brings further improvement. For our proposed method, both
training and evaluation stages involve the VER module. Our proposed method
makes consistent improvement regardless of the post-processing ways, whereas
VER works best. Due to the additional triplet- and utterance-level policy losses
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Table 3. Ablation experiments of the slot tagging models. Average F1-score(%)/joint-
accuracy(%) on the test set are reported with or without lexicon features.

Slot tagging models
lexicon features

✓ ✗

BLSTM 90.84/83.92 89.34/80.78
BLSTM-CRF 91.31/84.49 90.30/82.43
Focus 91.46/84.31 91.03/83.29

Table 4. Ablation study of the value error recovery (VER) module. Lexicon features
are used in all settings. “None” means no post-processing, “Delete” means simply
deleting the triplets that are invalid according to the ontology, and “VER” means
applying VER module. We report the average F1-score(%)/joint-accuracy(%) on the
test set.

Models
post-processing settings

None Delete VER

HD 82.47/73.90 87.30/76.05 89.16/81.22
Focus 88.75/81.81 91.10/83.34 91.46/84.31
DA-Align 88.53/82.12 91.25/83.59 91.69/84.74

Proposed 89.61/83.33 91.68/84.17 92.28/85.83

which help adapt the tagging model to ASR hypotheses, improvements are still
observed even without the post-processing.

Ablation Study of the Training Procedure Table 5 considers (1) whether to
pre-train the slot tagging model and (2) whether to utilize manual transcriptions
in RL-training. Results indicate that pre-training using transcriptions helps to
bootstrap the RL-training, and introducing transcriptions in RL-training stabi-
lizes the training. Furthermore, the average performance decreases dramatically
without these two procedures, which shows that the RL-training gets stuck in
local optimum without any experiences about slot tagging from Dtscp.

3.5 Analysis

Comparison with Baselines Traditional slot tagging models are supervised
by BIO-tags, so ASR hypotheses without BIO-tag annotations cannot be used.
In our method, the value error recovery module is applied to the output of the
slot tagging model and provides feedback on the prediction. The feedback is
utilized as a reward signal of RL-based training to finetune the slot tagging
model. We give an example to illustrate how slot tagging benefits from VER
guided training in Figure 2. The baseline model recognizes two slot chunks “公
司 (company)” and “甘河子镇 (Ganhezi town)” separated by a special word
“是 (is)”. The latter value is corrected by the VER module, whereas the former
value is retained because it is also available in the value candidates corresponding
to the act-slot pair inform-dest, resulting in an incorrect triplet. By introducing
the VER module during training, the tagging model learns to produce outputs
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Table 5. Ablation study of the training procedure for our proposed method. Lexicon
features are utilized. Average F1-score(%)/joint-accuracy(%) are reported.

Pre-training on Dtscp Exploiting Dtscp in RL-training avg.

✓ ✓ 92.28/85.83

✗ ✓ 91.89/85.12

✓ ✗ 91.87/85.01

✗ ✗ 43.06/34.69

Fig. 2. An example of slot tagging and value error recovery in map domain. Note that
during evaluation, only the ASR hypothesis is available as input.

more suitable for the subsequent VER module. Although word like “是 (is)” is
unlikely to appear in a destination name, the tagging model considers it as a
part of the slot, showing the capability to delimit the range of slots softly.

In the view of data used, both DA methods and our proposed method utilize
ASR hypotheses during training, while they treat hypotheses in different ways.
DA-Gen uses a pre-trained tagging model to produce pseudo labels for ASR
hypotheses. Therefore, noisy data is included for training, which will have a
negative impact. In our proposed method, we can train the slot tagging model
on ASR hypotheses with unaligned labels (i.e., act(slot=value) triplets in this
paper) directly.

Different Character Error Rate (CER) To further investigate why our
model achieves higher performance, we split the test set into various groups
according to the character error rate (CER) of the ASR hypotheses, and compare
our proposed method with the Focus and DA-Align baselines. The results in
the four domains are presented in Figure 3. With the increase of CER, the F1-
scores decline sharply. For utterances with low CERs (e.g., less than 10%), there
is no significant difference (under 1%) between the baselines and our model. As
the CER gets higher, our model can outperform the Focus and DA-Align by
a larger margin. The improvements are particularly dramatic when the CER is
higher than 90%. Note that exceptions happen occasionally, but in these cases,
the amount of data is too small to draw a reliable conclusion. This finding further
proves the robustness of our method against noisy ASR data.
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Fig. 3. F1-scores of our proposed model (with lexicon features) on the test set across
four domains with various CER. The data ratio of each group is displayed in the form
of line chart. The differences between the Focus baseline and the other two models
are annotated on the figure for clarity.

4 Related Work

SLU is often regarded as a sequence labelling problem modelled with Recurrent
Neural Network (RNN) [7,16,5,19] and recent transformers [1,8]. However, most
of them assume that there are no ASR errors. To improve the robustness of SLU
to ASR errors, previous works may apply input adaptations to reduce the gap
between training and testing [18,9], or correct predicted values by searching the
most similar candidates in pronunciation [11,13,4]. However, these two methods
are not optimized jointly. There are other works to directly train the SLU model
on ASR hypotheses [12,15,6]. However, these methods require qualified aligned
data annotation on ASR hypotheses, which costs a lot.

Except for the sequence labelling problem, SLU can also be directly con-
sidered as an unaligned task where outputs are semantic forms. In this view,
unaligned annotations (semantic forms) can be transferred from manual tran-
scriptions to ASR hypotheses straightforwardly. With unaligned data, SLU can
be considered as a classification task [14] or a generative task [17]. These meth-
ods do not require word-aligned labels but may lose generalization capability to
unseen samples, which is confirmed by the HD baseline in our experiments.

5 Conclusion

In this paper, we propose a robust SLU framework with a slot tagging model
and value error recovery module. The value error recovery is utilized to guide the
adaptive training of the slot tagging model on ASR hypotheses with reinforce-
ment learning. Extensive experiments confirm that our model is more robust to
ASR errors than the baselines.
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