Skip to main content

Label Embedding Enhanced Multi-label Sequence Generation Model

  • Conference paper
  • First Online:
  • 2027 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12431))

Abstract

Existing sequence generation models ignore the exposure bias problem when they apply to the multi-label classification task. To solve this issue, in this paper, we proposed a novel model, which disguises the label prediction probability distribution as label embedding and incorporate each label embedding from previous step into the current step’s LSTM decoding process. It allows the current step can make a better prediction based on the overall output of the previous prediction, rather than simply based on a local optimum output. In addition, we proposed a scheduled sampling-based learning algorithm for this model. The learning algorithm effectively and appropriately incorporates the label embedding into the process of label generation procedure. Through comparing with three classical methods and four SOTA methods for the multi-label classification task, the results demonstrated that our proposed method obtained the highest F1-Score (reaching 0.794 on a chemical exposure assessment task and reaching 0.615 on a clinical syndrome differentiation task of traditional Chinese medicine).

Y. Wang and F. Yan—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pratt, W., Yetisgen-Yildiz, M.: LitLinker: capturing connections across the biomedical literature. In: 2nd International Conference on Knowledge Capture, New York, pp. 105–12. Association for Computing Machinery (2003)

    Google Scholar 

  2. Zhang, L., Yu, D.L., Wang, Y.G.: Selecting an appropriate interestingness measure to evaluate the correlation between Chinese medicine syndrome elements and symptoms. Chin. J. Integr. Med. 18(2), 93–99 (2012)

    Article  Google Scholar 

  3. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., de Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38

    Chapter  Google Scholar 

  4. Read, J., Pfahringer, B., Holmes, G., et al.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)

    Article  MathSciNet  Google Scholar 

  5. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  6. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: 14th ACM International Conference on Information and Knowledge Management, New York, pp. 95–200. Association for Computing Machinery (2005)

    Google Scholar 

  7. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: 34th International Conference on Machine Learning, Sydney, pp. 1243–1252 (2017)

    Google Scholar 

  8. Li, W., Ren, X.C., Dai, D., et al.: Sememe prediction: learning semantic knowledge from unstructured textual wiki descriptions. arXiv preprint arXiv:1808.05437 (2018)

  9. Yang, P.C., Luo, F.L., Ma, S.M., et al.: A deep reinforced sequence-to-set model for multi-label classification. In: 57th Annual Meeting of the Association for Computational Linguistics, Florence, pp. 5252–5258. Association for Computational Linguistics (2019)

    Google Scholar 

  10. Bengio, S., Vinyals, O., Jaitly, N., et al.: Scheduled sampling for sequence prediction with recur-rent neural networks. In: Advances in Neural Information Processing Systems, Montreal, pp. 1171–1179. Neural Information Processing Systems (2015)

    Google Scholar 

  11. Kowsari, K., Brown, D.E., Heidarysafa, M., et al.: HDLTex: hierarchical deep learning for text classification. In: 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, pp. 364–371. IEEE (2017)

    Google Scholar 

  12. Baker, S., Korhonen, A.L.: Initializing neural networks for hierarchical multi-label text classification. In: 16th Biomedical Natural Language Processing Workshop, Vancouver, pp. 307–315. Association for Computational Linguistics (2017)

    Google Scholar 

  13. Peng, H., Li, J., He, Y., et al.: Large-scale hierarchical text classification with recursively regularized deep graph-CNN. In: 2018 World Wide Web Conference, Lyon, France pp. 1063–1072. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  14. Cerri, R., Barros, R.C., De Carvalho, A.C.: Hierarchical multi-label classification using local neural networks. J. Comput. Syst. Sci. 80(1), 39–56 (2014)

    Article  MathSciNet  Google Scholar 

  15. Yang, Y.Y., Lin, Y.A., Chu, H.M., et al.: Deep learning with a rethinking structure for multi-label classification. In: Asian Conference on Machine Learning, Nagoya, pp. 125–140. Proceedings of Machine Learning Research (2019)

    Google Scholar 

  16. Fu, D., Zhou, B., Hu, J.: Improving SVM based multi-label classification by using label relationship. In: 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, pp. 1–6. IEEE (2015)

    Google Scholar 

  17. Aly, R., Remus, S., Biemann, C.: Hierarchical multi-label classification of text with capsule networks. In: 57th Annual Meeting of the Association for Computational Linguistics, Florence, pp. 323–330. Association for Computational Linguistics (2019)

    Google Scholar 

  18. Nam, J., Mencía, E.L., Kim, H.J., et al.: Maximizing subset accuracy with recurrent neural networks in multi-label classification. In: Advances in Neural Information Processing Systems, Long Beach, pp. 5413–5423. Neural Information Processing Systems (2017)

    Google Scholar 

  19. Wiseman, S., Rush, A.M.: Sequence-to-sequence learning as beam-search optimization. In: 2016 Conference on Empirical Methods in Natural Language Processing, Austin, pp. 1296–1306 (2016)

    Google Scholar 

  20. Zhang, W., Feng, Y., Meng, F., et al.: Bridging the gap between training and inference for neural machine translation. arXiv preprint arXiv:1906.02448 (2019)

  21. Yang, Z., Dai, Z., Yang, Y., et al.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing System, Vancouver, pp. 5753–5763. Neural Information Processing Systems (2019)

    Google Scholar 

  22. Yang, P., Sun, X., Li, W., et al.: SGM: sequence generation model for multi-label classification. In: 27th International Conference on Computational Linguistics, Santa Fe, pp. 3915–3926. Association for Computational Linguistics (2018)

    Google Scholar 

  23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  24. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, Long Beach, pp. 5998–6008. Neural Information Processing Systems (2017)

    Google Scholar 

  25. Larsson, K., Baker, S., Silins, I., et al.: Text mining for improved exposure assessment. PLoS ONE 12(3), e0173132 (2017)

    Article  Google Scholar 

  26. Szymański, P., Kajdanowicz, T.: A scikit-based Python environment for performing multi-label classification. arXiv preprint arXiv:1702.01460 (2017)

  27. Liu, L., Mu, F., Li, P., et al.: NeuralClassifier: an open-source neural hierarchical multi-label text classification toolkit. In: 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Florence, pp. 87–92. Association for Computational Linguistics (2019)

    Google Scholar 

  28. PubMed Homepage. https://pubmed.ncbi.nlm.nih.gov. Accessed 20 Mar 2020

Download references

Acknowledgement

The research work is partially supported by the Sichuan Major Science and Technology Special Program under Grant (2017GZDZX0002), the Sichuan Science and Technology Program under Grant (2018GZ207), the Sichuan Province Science and Technology Support Program under Grant (2020YFG0299, 2020YFSY0067), and the National Natural Science Foundation of China under Grant (61801058, 61501063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqiang Wang or Hongping Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Yan, F., Wang, X., Tang, W., Shu, H. (2020). Label Embedding Enhanced Multi-label Sequence Generation Model. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2020. Lecture Notes in Computer Science(), vol 12431. Springer, Cham. https://doi.org/10.1007/978-3-030-60457-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60457-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60456-1

  • Online ISBN: 978-3-030-60457-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics