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Abstract
We present MoonLight, a tool for monitoring temporal and spatio-temporal properties of mobile, spatially distributed, and
interacting entities such as biological and cyber-physical systems. In MoonLight the space is represented as a weighted
graph describing the topological configuration in which the single entities are arranged. Both nodes and edges have attributes
modeling physical quantities and logical states of the system evolving in time. MoonLight is implemented in Java and
supports the monitoring of Spatio-Temporal Reach and Escape Logic (STREL). MoonLight can be used as a standalone
command line tool, such as Java API, or via Matlab™ and Python interfaces. We provide here the description of the
tool, its interfaces, and its scripting language using a sensor network and a bike sharing example. We evaluate the tool
performances both by comparing it with other tools specialized in monitoring only temporal properties and by monitoring
spatio-temporal requirements considering different sizes of dynamical and spatial graphs.

Keywords Spatio-temporal logic · Specification-based monitoring

1 Introduction

Dynamical systems often display complex spatio-temporal
behavioral patterns emerging as a collective and cooperative
phenomenon of locally interacting components. Monitoring
these behaviors plays a key role in predicting the overall sys-
tem behavior at the macroscopic level or in understanding the
underlying mechanisms occurring at the microscopic scale.

These patterns are ubiquitously present in nature: Tur-
ing patterns emerging in morphogenesis [6, 13], birds

flying in V-formation [37], cooperative foraging in ani-
mal groups [32], and electrical spiral waves propagating
in excitable media [5, 27] are typical fascinating exam-
ples. Spatio-temporal properties are likewise important in
human-engineered artifacts such as Collective Adaptive Sys-
tems [36] (CAS) and Cyber-Physical Systems [49] (CPS),
which often resemble many features of the natural ones.

CAS and CPS aggregate several heterogeneous and spa-
tially distributed entities that are dynamically networked and
can cooperate among themselves, with humans, or with other
systems. Examples of these systems can be found in the in-
ternet of things, biking sharing systems, vehicular networks,
and smart cities. CPS are also often safety-critical [49] sys-
tems where hardware/software failures can be responsible
for tragic accidents such as loss of lives, the injury of people,
or environmental damages.

Running example We consider as our running example
throughout this paper the monitoring of a mobile ad hoc
wireless sensor network [2] consisting of three different types
of nodes: coordinator, router, and end-device.

The coordinator is the node responsible for initiating the
network and routing protocol: each network can have only
one single coordinator. Router nodes are responsible for for-
warding data packets received from other devices, establish-
ing a backbone of intermediate nodes necessary to reach all
the other ones. End-devices are generally the nodes used to
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Fig. 1 Sensor network with 1 (C, in violet), 2 (R,
in cyan), and 7 (E, in yellow)

sense and control physical processes. They can only com-
municate directly with the coordinator and other routers, but
they cannot relay data packets from other devices.

In our example, we assume that all the nodes participat-
ing in the network are battery-powered and equipped with
sensors with which they can measure and collect data from
the environment (e.g., pollution, temperature, etc.). Figure 1
illustrates a network with 10 nodes (1 (C) in vi-
olet, 2 (R) in cyan, and 7 (E) in yellow).
The color version of the article is given online. The nodes
are distributed in an Euclidean space, i.e., the axes repre-
sent their coordinates in the space. The edges represent the
connectivity graph of the network, expressing the fact that
two devices can directly interact (i.e., they are within their
communication range).

Specification-based monitoring Performing an exhaus-
tive analysis at design time of complex networked and spa-
tially distributed systems is generally impractical due to the
state-space explosion. A more feasible but nonexhaustive
approach is to instrument such systems and to test them
using specification-based monitoring [10]: systems’ execu-
tion traces are recorded and stored during their simulation
or execution and are monitored offline with respect to a re-
quirement specified in a formal language [44] such as, for
example, Signal Temporal Logic (STL) [40].

Offline monitoring is typically performed on the numeri-
cal simulation (its digital twin) of the system behavior to test
the correctness of its design under different initial conditions,
parameter values, and input sequences [10, 11].

In the last years, specification-based monitoring [10]
became the basic functionality upon which many other
computer-aided methods are developed for the analysis and
synthesis employed in CPS engineering such as falsification
analysis [1, 51, 52, 54], fault-localization [12], failure expla-
nation [14, 16], and parameter synthesis [7, 19, 23, 24].

The verdict of the monitoring process can be either a
Boolean value (true/false) stating whether the execution trace
satisfies or violates the formal requirement or a real value

measuring how much the trace is close to satisfying or violat-
ing the specification according to a chosen notion of distance
and formal specification semantics [9, 26, 30, 31, 50]. The
majority of the currently available monitoring tools can only
handle temporal requirements.

In this paper, we present MoonLight, a lightweight
tool for monitoring temporal and spatio-temporal properties
of spatially distributed entities, which can move in space and
change their connectivity. Our implementation is available
at https://github.com/MoonLightSuite/MoonLight.

MoonLight supports monitoring of Spatio-Temporal
Reach and Escape Logic (STREL), a spatio-temporal spec-
ification language presented in [8, 45]. STREL extends
STL [40] with a number of spatial operators, allowing us
to describe spatio-temporal behaviors such as “there is al-
ways a path of routers that connect an end device with a
coordinator with a battery level more than 50%” or “in a
bike sharing system, if in a station there are no bikes, then I
can find a bike in a close station at a distance less than 500
meters”. MoonLight takes as input a STREL formula and
a spatio-temporal trajectory. The space is represented as a
weighted graph, describing the topological configurations in
which spatially distributed entities are arranged. Nodes rep-
resent single entities (e.g., sensors in a sensor network or
bike stations in a bike sharing system), and edges represent
the connection between the entities. Both nodes and edges
have attributes modeling physical and logical quantities that
can change in time (e.g., values of the battery in the sensor,
the Euclidean distance between the sensors, or the number
of bikes in the bike station). Therefore a spatio-temporal sig-
nal, in the most general case, is described by a sequence of
such weighted graphs, allowing both spatial arrangements
and attributes to change in time. MoonLight monitors
such a sequence of graphs with respect to a STREL formula,
returning a Boolean or quantitative verdict according to the
semantic rules of [45].

The main component of MoonLight is its Java Ap-
plication Programming Interface (API), a set of specialized
classes and interfaces to manage data domains and signals,
to represent spatial models that can evolve in time, to moni-
tor temporal and spatio-temporal properties, and to manage
input/output to/from generic data sources. Moreover, it also
contains a compiler that generates the necessary Java classes
for monitoring from a MoonLight script. The latter are
built and dynamically loaded to enable the monitoring of the
specified properties. MoonLight provides also an inter-
face that enables the integration of its monitoring features in
Matlab™and Python. So MoonLight can be used as
a standalone command line tool, as a Java API, via Mat-
lab™ or Python interfaces.

This paper extends the paper presented at RV2020 [15] as
follows:
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• we provide a description of the Java architecture of the
tool;

• we describe how to use MoonLight via console and as
a Java API;

• we provide an extensive description of the MoonLight
script language;

• we develop API to use MoonLight from Python;
• we provide a new bike sharing monitoring example in

Python with real data using a static spatial graph;
• we extend the experimental evaluation of the spatial opera-

tors considering both dynamical and static spatial models.

Organization of the paper The rest of the paper is struc-
tured as follows. In Sect. 2, we present the related work. In
Sect. 3, we introduce some background, in particular, the
logic STREL. In Sect. 4, we give an overview of the imple-
mentation, and in Sect. 5, we describe the MoonLight
script language. In Sect. 6, we present all different ways to
use MoonLight, in Java API, in the console, and in Mat-
lab™ and Python environments. In Sect. 7, we show the
evaluation of the tool and in Sect. 8 the conclusion and future
works.

2 Related work

The tools currently available for specification-based moni-
toring are generally limited to verifying temporal require-
ments over mixed/analog time series of data. They do not
consider the spatial configuration of the entities such as
sensors and computational units. Examples of monitoring
tools for temporal properties include R2U2 [41] for Mission
Linear Temporal Logic (MLTL) [41], S-Taliro [3] for Met-
ric Temporal Logic (MTL) [33], AMT [47], RAMT [46],
and Breach [21] for Signal Temporal Logic (STL) [39, 40],
TeSSLa [35] and RTLola [17] for temporal stream-based
specification languages, and Montre [53] for Timed Regu-
lar Expressions (TRE) [4]. However, the complex spatio-
temporal patterns emerging in cyber-physical or collective
adaptive systems cannot be expressed using temporal specifi-
cation languages. As a consequence, in the last decade, there
were many attempts to extend temporal specification logics
such as STL to capture also spatial requirements: Spatial-
Temporal Logic (SpaTeL) [28], the Signal Spatio-Temporal
Logic (SSTL) [43], the Spatial Aggregation Signal Temporal
Logic (SaSTL) [16, 38], and STREL [8] are some examples.

Although there are software prototypes supporting the
monitoring for these specification languages, they are usu-
ally developed more with the aim to provide a proof-of-
concept rather than becoming stable and usable tools. The
only tool we are aware of is jSSTL [42], an offline moni-
toring tool for spatio-temporal properties. Whereas Moon-

Light can monitor STREL formulae over dynamic net-
works, jSSTL [42] can monitor SSTL formulae over a static
topological space.

It is also worth mentioning VoxLogicA [18], a spatial
model checking tool for image analysis. However, this tool
is customized for medical imaging and does not take into
consideration time. Thus it is not suitable for monitoring
spatio-temporal properties.

3 Background material

3.1 Spatial model

In MoonLight the space is modeled as a graph, where
each node represents a location while each edge represents a
topological relation. Edges can be labeled with one or more
attributes. Formally, we define a spatial model S as a pair
〈L,W〉 where L is a set of locations and W ⊆ L × Rm × L
is a proximity function associating at most one label w ∈ Rm

with each distinct pair �1,�2 ∈ L. The meaning of the weight
w depends on the type of analysis. For instance, w can be the
Euclidean distance between locations, the hops for connected
nodes, or any tuple of values characterizing the edge between
two locations. In the following, we will equivalently write

(�1,w,�2) ∈W as W(�1,�2) = w.

In the sensor network example, each device of the network
represents a node/location. The edges are labeled with both
their Euclidean distance and with the integer value 1. This
last value is used to compute the hop (shortest path) count
between two nodes, that is, the number of intermediate net-
work nodes through which data must pass between a source
node and the target one. A dynamical spatial model S(t)
associates a different spatial model at each time.

3.2 Spatio-temporal trace

A spatio-temporal trace describes the evolution in time
of a number of variables in each location of the spa-
tial model. Formally, given the (dynamical) spatial model
S(t) = 〈L,W(t)〉, we define a spatio-temporal trace as a func-
tion �x : L→ T→ Dn that associates with each location � ∈ L
a set of temporal signal �x(�) = (ν1, . . . , νn).

In our running example, each device (node/location of
the network) contains three signals evolving in time: the
type of node (coordinator, router, end-device), the level
of battery, and the values of the temperature: �x(�, t) =

(νtype, νbattery, νtemperature).
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Fig. 2 STREL syntax

3.3 Spatio-temporal reach and escape logic
(STREL)

Moonlight evaluates properties specified in the linear-
time spatio-temporal logic STREL over spatio-temporal sig-
nals and static or dynamical spatial model. It can also directly
handle only temporal signals.

The syntax of STREL is summarized in Fig. 2. The atomic
expressions (relExpression) consist of relation expres-
sions on signal variables like, for instance, (battery >

0.5) or (nodeType == 2). Formulas are built by using
standard Boolean operators (negation !, conjunction &, dis-
junction |, and implication ->) together with a set of temporal
and spatial modalities.

Temporal properties are specified via the standard until

and since operators (see, e.g., [39, 40]), from which we
can derive the future eventually and globally operators
and the past variants, once and historically. All these
operators may take an interval of the form Interval =

[Expr, Expr], where Expr is a real expression that will be
evaluated to a nonnegative value. The interval can be omitted
in case of unbounded temporal operators.

Spatial modalities, instead, are , ,
, and operators. All these operators may be

decorated with a distance Interval and a distance

expression. The distance expression contains the variables
associated with each edge and is used to compute the length
of an edge. If omitted, the real value 1.0 is used. To describe
the spatial operators, we consider some examples.

The operator allows us to express properties re-
lated to the existence of a path. Consider the following prop-

erty:

P1 holds if from a node of type 3 (an end device) we can reach
a node of type 1 or 2 (a coordinator or a router) following
a path in the spatial graph such that the hop distance along
this path (i.e., its number of edges) is not greater than 1.
This property specifies that “end device should be directly
connected to a router or the coordinator”.

The operator can be used to express the ability to
move away from a given point. Let us consider the following
property:

P2 states that from a given location we can find a path of
(hop) length of at least 5 such that all nodes along the path
have a battery level greater than 0.5, i.e., that a message will
be forwarded along with a connection with no risk of power
failure.

To specify properties around a given location, the opera-
tors and can be used. For instance, we
can consider the following property:

P3 is satisfied (at a given location) whenever there is a node at
a distance between 0 and 250 having a battery greater than
0.5. In this formula the distance is computed by summing
the value dist of traversed edges. The operator
works in a similar way; however, it requires that its subfor-
mula holds in all nodes satisfying the distance constraints.

Note that both and are existential operators,
as they predicate the existence of a path with certain proper-
ties, and all the properties are interpreted at a given location,
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at a given time. Temporal and spatial operators can be nested,
for example, as

PT1 holds if each node can reach a node in less than 10 hops
where the battery is greater than 0.5 in at least one time step
in the next 5 time units. We will show a second example later,
but for more formal details and examples about STREL, we
refer to [8] and the tool documentation.

STREL as STL [39, 40] has two semantics: the classical
Boolean semantics and the quantitative ones. Given a (dy-
namical) spatial model S, a spatio-temporal trace �x, and a
STREL formula φ, it returns a Boolean spatio-temporal sig-
nal in case of the Boolean semantics, which means a spatio-
temporal signal that gives the Boolean satisfaction of prop-
erty φ in each location at each time. In case of the quantitative
semantics, the tool returns a real-valued spatio-temporal sig-
nal with the quantitative satisfaction of property φ in each
location at each time. As in STL, the satisfaction of the whole
formula corresponds to the satisfaction at time 0. We will see
in the description of the script language that the user can eas-
ily choose the semantics to use. In the Appendix, we provide
the formal definition of the semantics, and we refer the reader
to [45] for further details about the STREL logic.

4 Implementation overview

The architecture of MoonLight consists of three main
components: Core API, a MoonLight Compiler, and a
Front-End Layer.

The Core API provides all the Java classes and interfaces
that are used to represent temporal and spatio-temporal sig-
nals and to manage the different kinds of input data, together
with the classes that allow executing the monitoring algo-
rithms. It provides also the classes used to read or write
signals on external sources (such as files). We will see later
that Core API can be used to integrated MoonLight fea-
tures in Java applications.

MoonLight Compiler enables the use of our tool to
users that are not familiar with Java programming. This
compiler allows generating a monitor starting from a textual
representation via a MoonLight Script (see Sect. 5).

Finally, the Front-End Layer encompasses components
that can be used to interact with MoonLight with differ-
ent tools. Currently, the layer provides a console interface,
to use the tool from a terminal, and two modules that al-
low integrating MoonLight within MatLab and Python
scripts.

The source code is publicly available in the MoonLight
GitHub Repository. The building and testing processes of

MoonLight are automated using gradle1 framework that
allows us to automatically download all the required libraries
providing the necessary jar files. Moreover, gradle enables
the automatic execution of all the tests integrated in Moon-
Light. Thus a test suite is used to simplify code mainte-
nance and integration of new features.

In what follows, we describe the main features of Moon-
Light, whereas some of the technical details are omitted.

MOONLIGHT core API As we have already anticipated, this
module provides a Java API containing all the basic features
of MoonLight, which can be included to use our tool in a
Java application. By following the open-close principle and
by relying on well-known design patterns, MoonLight
Core API can be easily extended with new features. For in-
stance, this allows us to integrate new operators and consider
different sources for signals or a new representation of spatial
models.

The module consists of three main packages:

• signal, containing interfaces and classes that can be used
to represent and handle temporal and spatio-temporal sig-
nals;

• monitoring, providing interfaces and classes implementing
temporal and spatio-temporal monitors;

• io, supplying the interfaces and classes that can be used to
read/write signals from/to data sources, such as files.

The interface Signal<S> is used to represent a generic
temporal signal associating each time value t with a value
of type S. The default implementation of this interface is a
piecewise constant signal represented as a sequence of time
segments, each containing a value v: S.

The interface SpatioTemporalSignal<S> is used to
represent a generic spatio-temporal signal associating each
location that is univocally identified by an index with a
Signal<S>. Like for the temporal case, the default imple-
mentation of SpatioTemporalSignal<S> associates its lo-
cation with a piecewise constant signal.

Spatial models are represented in terms of interface
SpatialModel<V,E>, identifying a graph where locations
(vertexes) are associated with values of type V, whereas edges
are labeled with values of type E. The exact implementa-
tion of this class can be selected according to the specific
user’s requirements. A number of default implementations,
based on different representations of graphs, are provided
in the module. To represent the evolution of the spatial
model in time, the interface LocationService<V,E> can
be used. This interface associates each time value t with
a SpatialModel<V,E>.

Finally, the package also provides utility classes
that enable the access to the values of a signal using Java
Iterators and Java Streams.

1 https://gradle.org/
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Interfaces and classes defined in package signal are used
in package monitoring to implement a monitoring algo-
rithm. Temporal and spatio-temporal monitors are defined
via the functional interfaces2 TemporalMonitor<S,T> and
SpatiolTemporalMonitor<V,E,S,T>.

The interface TemporalMonitor<S,T> has a single
method monitor that, given an input signal Signal<S>,
computes the output signal Signal<T>. Utility methods and
classes are used to combine monitors to build new ones. For
instance, the following code is used to build a monitor that
computes the conjunction of two given monitors m1 and m2:

The class TemporalMonitorBinary<S,T> combines the
signals resulting from the evaluation of monitors m1 and m2
by using the given binary operator (that is an instance of
BinaryOperator<T>). This operator depends on the used
SignalDomain<T>. The latter is an interface representing
the signal domain used to interpret formula operators on
data of type T.

The behavior of spatio-temporal monitoring is similar. In-
deed, the interface SpatiolTemporalMonitor<V,E,S,T>
has a single method monitor that takes as parameters
a LocationService<V,E>
and
a SpatioTemporalSignal<S>
and returns
a SpatioTemporalSignal<T>.

The monitoring procedure recursively follows the syntax
tree of the formula, considering as inputs the output sig-
nals of the subformula. Each operator has a specific mon-
itoring algorithm. The monitoring algorithms for the tem-
poral operators are implemented using the same approach
of [22, 25], which leverages Lemire’s algorithm [34]. The
monitoring of the spatial operators follows the approach pre-
sented in [45], which uses a spatial flooding algorithm, i.e.,
the monitored values are propagated on the graph until a
fixed point is reached. The algorithms for , ,
and operators need also to compute the matrix of
minimum distances. The number of steps needed to evaluate
the method monitor is linear in the size of the formula, in
the length of the signal, and in the number of edges in the
spatial model, and it is quadratic in the number of locations.
For more detail about the monitoring algorithms and their
correctness and complexity, we refer the reader to [45].

2 We recall that in Java a functional interface is an interface contain-
ing a single abstract method.

Finally, the package io provides the classes that allow
loading and saving temporal and spatio-temporal signals in
different formats. Currently, JSon and CSV formats are sup-
ported.

MOONLIGHT compiler The classes and interfaces de-
scribed above can be used to integrate a MoonLight
monitor in a Java application. However, often we are not
interested in writing a Java program to monitor a set of
trajectories. For this reason, to simplify the use of our tool,
we have developed a simple compiler that, given a textual
representation of a MoonLight monitor (a Moonlight
script), produces the appropriate instances of the classes in
the MoonLight Core API. The exact syntax of Moon-
Light script is reported in Sect. 5. Here we briefly outline
the compiling procedure and its main components.

MoonLight Compiler is based on AntLR [48], a
powerful and largely used parser generator. The generation
process consists of three steps: parsing, validation, and gen-
eration.

In the parsing phase, the script is loaded, and an abstract
syntax tree (AST) is generated. This activity is performed by
relying on the classes generated by AntLR. In the validation
phase, the generated AST is visited to verify the correct use
of symbols and to implement a type-checking procedure.
Finally, monitoring classes are instantiated and used by the
Front-End Layer.

A MoonLight script can be either loaded from a
file or from a string by relying on the utility methods
ScriptLoader.loadFromFile(String fileName) and
ScriptLoader.loadFromString(String code).

Front-end layer The Front-End Layer provides the com-
ponents that allow using MoonLight in different contexts.
Currently, this layer contains a Java Console Application that
allows executing monitoring from a number of given trajec-
tories. A screenshot of the execution is reported in Fig. 3.
We refer to the MoonLight online documentation for a
complete list of parameters and a detailed description of the
use of MoonLight Console Application.

Moreover, in the Front-End Layer, two components are
also available to integrate MoonLignt in MatLab and
Python. A detailed description of the two modules and their
use is available in Sect. 6.

5 Moonlight script

In this section, we present the script language. A Moonlight
script consists of five main sections:
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Fig. 3 A run of MoonLight Console Application

describing the custom types declared by the user, the type
of monitored signals, the type of space (for spatial/spatio-
temporal monitoring), the output domain, and the declaration
of formulas.

Type declaration The user can declare his own type,
which can be used later as types for signal and space.

Signal declaration In the definition of the domains of
input signal, we should define the type of each variable of
our trajectory with which we associate a name:

where each <VariableDeclaration> takes the standard
form <type> <name>. Three basic types are natively sup-
ported in our specification language: for Booleans,
for integers, and for real values. Moreover, the name of
one of the declared types can be used.

Space declaration Similarly to the variables, we can de-
clare the type of labels on the edges:

Note that if we are only interested in temporal properties,
then this part is omitted in the script.

Domain declaration MoonLight, like STREL, sup-
ports different semantics for monitoring. A user can

specify the desired one by indicating the specific
SemiringExpression:

Currently, MoonLight supports qualitative ( ) and
quantitative ( ) semantics of STREL.

Formula declaration Finally, the script contains the list
of formulas that can be monitored:

A formula can be used within another formula. Furthermore,
a formula can have parameters that are instantiated when
monitoring is performed:

The syntax of STREL Formula is reported in Fig. 2 and has
been described in the background material.

Example 1
Figure 4 reports an example of a Moonlight script for the
sensor network system. The script starts (lines 1–4) with the
definition of the domains of input signals. In our scenario,
these values are the type of node, the battery level, and the
temperature level. As domains, the node type is represented
by an integer ( ), and the battery and temperature by real
values ( ).

The model for the space is described in lines 5–14. We
can define a variable also on the location, which can be seen
as a constant signal. In the example, we associate with each
location the node type, which is represented by an integer
( ). Spatial structures in STREL can change over time. This
enables the modeling of the mobile network of sensors as in
our example by updating edges and edge labels. The edges
can have more than one label with different domains. In this
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Fig. 4 The sNetMonScript.mls file, an example of Moonlight mon-
itor script specification

case, we have two labels, hop having domain and dist
with type . The user specifies the semantics in line 15.
Lines 16–18 represent examples of STREL formulas. Line
16 defines an atomic proposition, which is also used in the
next two formulas. Line 18 defines a parameterized formula
by the parameter k .

6 Front-end

In this section, by two simple examples we will show how
MoonLight can be integrated in MatLab and Python
scripts.

6.1 Using MOONLIGHT in MATLAB™

All the files and scripts needed to integrate MoonLight
are available in the folder distribution/matlab. The in-
stallation script install.m contains the commands to save
the right paths and should be run first. A detailed description
of the installation process is available on the tool website.
Folder distribution/matlab/moonlight contains the li-
brary moonlight.jar and the Matlab™ classes:

It contains all methods to use MoonLight in the Mat-
lab™ environment.

ScriptLoader.m contains the methods to load the
MoonLight .mls script. This can be loaded from file us-
ing the loadFromFile(<filename>) method, which takes
as input the file name containing the script to load, or
from a string using the loadFromText(<stringArray>)
method. The method produces an object of the
MoonlightScript class. After this operation is performed,
a Java class is generated from the script and dynamically
loaded. A reference to this object is returned to be used later.

Considering again our running example, we can load the
Moonlight script of Fig. 4 with the code

MoonlightScript is a wrapper around the Java inter-
face moonlight/MoonLightScript. It contains all the use-
ful methods to get a monitor associated with formulas de-
fined in the script. MoonlightScript.isTemporal() and
MoonlightScript.isSpatialTemporal() return true if
this is a temporal or spatio-temporal monitor, respectively;
To change the domain of the script on the fly, we can use the
methods MoonlightScript.setBooleanDomain() for
the Boolean semantics and MoonlightScript.

setMinMaxDomain() for the quantitative one. For exam-
ple, we can specify in our script the monitoring semantics
by writing

MoonlightScript.getMonitors() returns the list of
available formulas. In our example,

returns the string list

MoonlightScript.getMonitor(<formulaName>)

instantiates the monitor associated with the formula named
formulaName. The method generates an object of the
TemporalScriptComponent or of the SpatialTemporal
ScriptComponent, depending on whether the script is tem-
poral or spatio-temporal. Considering again our running
example, we can define the monitor of formula in the
following way:

Once the monitor is generated, we can use it to verify the
satisfaction of the property over a given temporal or spatio-
temporal signal. We first describe the spatio-temporal case
and later the temporal one.

SpatialTemporalScriptComponent.m is a wrap-
per around the Java interfaces moonlight/SpatialTempo-
ralScriptComponent and contains the methods that can
be used to monitor a specific spatial-temporal trajec-
tory: monitor in case of a dynamical spatial model and
monitor_static in case of a system with fixed spatial
structure. These methods take four inputs:

• <graph> is an array of Matlab™ graph structures spec-
ifying the spatial structure at each point in time. In case of
a static model, it is a single graph structure;

• <time> is an array of time points at which observations
are provided;
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• <values> is a map (a cell array) with a cell for each
node. In each cell, there is an n × m matrix where each
row represents the values of the signals at the time points
specified by <time> (with n equal to the number of time
points and m the number of the considered signals);

• <param> (optional) is an array of values used to instantiate
the parameters of the formula. In case of a nonparametric
formula, it is omitted.

The monitor method uses some private methods to convert
the Matlab™ inputs <graph> and <values> in Java
inputs: toJavaGraphModel, and toJavaSignal.

In our running example, we have

where spatialModel is the array of Matlab graph struc-
tures where with each time step i, a spatialModel{i}
is associated. Edges represents the adjacent list of the
graph; time is the array of time points; values is a cell
array, where each cell has a three-dimensional signal repre-
senting the node type, battery, and temperature. We represent
different types of nodes using integer numbers 1, 2, and 3 to
represent coordinator, router, and end-device, respectively.
Finally, param is used to instantiate the parameter k of for-
mula Ppar. The output result is similar to the input signal.
It is a map that associates a Boolean signal (for the Boolean
semantics) or a real-value signal (for the quantitative seman-
tics) at each node, i.e., the Boolean or quantitative satisfaction
at each time in each node.

In Fig. 5 (top), we can see the Boolean satisfaction at
time zero of each node with respect to the formula P1 of
our script example in Fig. 4. The (marked with a
V) on the plot of Fig. 5 (top) correspond to the nodes that
satisfy the property, i.e., the end devices that reach a router
or a coordinator with at most one hop.

Figure 5 (bottom) shows the satisfaction of the formula

P4 holds only in the nodes connected directly to the coordi-
nator or to routers that can reach the coordinator through a
maximum of four other routers. We can see that nodes 3, 4,
5, and 9 satisfy P1 but not P4. The property

can be used to check that P4 is true at each time step.
TemporalScriptComponent.m is wrapper around the

Java interfaces moonlight/TemporalScriptComponent and
contains the method monitor(<time>, <values>,
<parameters>), where:

• <time> is an array containing the trajectory time steps;
• <values> is an n×m matrix considering a trajectory with

m signals and n time steps for each signal;

Fig. 5 (top) Boolean satisfaction of formula P1 ( (V) sat-
isfy the formula, do not satisfy the formula); (bottom)
Boolean satisfaction of formula P4 ( (V) satisfy the for-
mula, do not satisfy the formula)

Fig. 6 Example of monitoring a temporal trajectory in Matlab™

• <param>(optional) is an array containing the values of the
formula parameters.

Example 2
Figure 6 describes a simple example of a temporal monitor
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Fig. 7 Example of Python MoonLight script

loading the script as a string. We generate the trajectory
simply as a two-signal trajFunction = @(t)[sin(t);
cos(t)] of the sin and cos functions. We fix the time vector
as the array time = 0:0.1:3.1, and then the input values
of the monitor are the values of trajFunction for the time
points. We define the script directly as a string (lines 4–9) and
load it with the loadFromText method. The initialization of
the monitor, considering the formula past, is done in line 11,
and the monitoring in line 12. We then repeat the monitoring
considering the Boolean semantics (line 14) and the formula
future (line 15).

6.2 Using MOONLIGHT in Python

The module distribution/python contains all files
needed to use MoonLight in Python. In this case,
we do not need an installation script. The framework
requires the library pyjnius, which is a Python li-
brary for accessing to Java classes. The folder con-
tains the library moonlight.jar and the Python file
moonlight.py, which contains all classes and meth-
ods to interface Moonlight. Similarly to Matlab, we
have the four classes ScriptLoader, MoonlightScript,
TemporalScriptComponent, and SpatialTemporal
ScriptComponent.

The methods available in the Python interface are exactly
the same available in the corresponding m-file of Matlab.
Data are directly passed as inputs without needing a conver-
sion.

Example 3
Figure 7 describes an example of a spatio-temporal monitor
loading the script as a string. We get the spatio-temporal
trajectory from a dataset containing the historical dock read-
ings from sensors in Melbourne’s Bike Share [20]. For each
bike station, we know the geographical coordinates and the
number of bikes (nBikes, line 8) available at specific times
(signalValues, line 6), which are the same for each station.

Fig. 8 Boolean satisfaction of formula service. nodes
satisfy the service formula, and nodes do not satisfy the
formula. Dashed lines connect locations with a mutual distance below
500 meters

The spatial model (graph, line 4) is a static fully connected
graph representing the distance (in meters) from one loca-
tion to another one. locationDb (line 2, implementation in
bike.ipynb) is a wrapper around the dataset that we use to
generate the spatial model (lines 3–4) and the temporal tra-
jectories (lines 5–6). We define the script directly as a string
(lines 7–12) and load it with the loadFromTextmethod. The
initialization of the monitor, considering formula service,
is done in line 14, and the monitoring in line 15. The formula
service is satisfied in a given location if there is another lo-
cation within 500 meters with more than 2 bikes. Figure 8
shows the satisfaction of the formula.

7 Experimental evaluation

In this section, we evaluate the performance of the tool. First,
we compare the performance of Moonlight with respect
to S-Taliro [3] and Breach [21], the two most used tools
to monitor STL formulas. Then we evaluate the scalability of
the spatial operators by varying the size of the spatial model
and the number of time steps.

Our experiments were performed on a workstation with an
Intel Core i7-5820K (6 cores, 3.30 GHz) and 32 GB RAM,
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Fig. 9 The comparison of the computational time (in sec.) between MoonLight, Breach, and S-Taliro for simulation traces with different
lengths. The different colors represent the result for different requirements , , , and , the color version of the article is given online

running Linux Ubuntu 16.04.6 LTS, Matlab™ R2020a
and OpenJDK 64-Bit Server VM 1.8.0_252.

7.1 Temporal evaluation: monitoring signal
temporal logic

We consider the Automatic Transmission example in [29].
This benchmark consists of a Matlab™/Simulink deter-
ministic model of an automatic transmission controller. The
model has two inputs (the throttle and break) and two outputs,
the speed of the engine ω (RPM) and the speed of the vehi-
cle v (mph). We monitor the robustness of four requirements
in [29]:

The engine speed never reaches ω̄:

globally (ω < ω̄).

The engine and vehicle speeds never reach ω̄ and v̄,
respectively:

globally{(ω < ω̄) & (v < v̄)}.

If the engine speed is always less than ω̄, then the vehicle
speed cannot exceed v̄ in less than T seconds:

!{eventually[0,T] (v > v̄) & globally (ω < ω̄)}.
Within T seconds, the vehicle speed is above v̄, and from

that point on the engine speed is always less than ω̄:

eventually[0,T]{ (v ≥ v̄) & globally (ω < ω̄) }.

We randomly generated 20 different input traces with 6400
samples and other 20 with 12800 samples (0.01 sec. of sam-
pling time). For each input trace, we simulated the model and
monitored the robustness of the four requirements over the
outputs by varying the parameters v̄ ∈ {120,160,170,200},
w̄ ∈ {4500,5000,5200,5500}, and T ∈ {4,8,10,20}. For a
fixed combination of parameters and output traces, we re-
peated the monitoring experiment 20 times and considered
the mean of the execution times. In Fig. 9, we compare

Table 1 List of STREL formulas used in the experimental evaluation

STREL formula

P1 (x<=0.5)reach(hop)[0, 30] (x>0.5)

P2 escape(hop)[5, inf] (x>0.5)

P3 somewhere(hop)[0, 3] (x>0.5)

SPT1 (x<=0.5)reach[0,30]eventually(x>0.5)

TSP1 globally((x<=0.5)reach[0,30](x>0.5))

SPT2 somewhere[0,30]eventually(x>0.5)

TSP2 eventually(somewhere[0,30](x>0.5))

the performance of our Moonlight monitors with S-
Taliro [3] and Breach [21] using boxplots, representing
the quartiles of the execution times distribution for moni-
toring each requirement with each tool. The graph shows
a good performance of Moonlight with respect to the
other tools. However, it is important to note that Breach
considers piecewise linear signals and computes the inter-
polation between two consecutive samples when necessary,
whereas our tool and S-Taliro interpret the signal step-
wise.

7.2 Spatio-temporal evaluation

We evaluate the scalability of the spatial operators consider-
ing a graph with N nodes and a signal consisting of K steps.
We compute the Boolean (B) and quantitative (Q) semantics
considering dynamic and static graphs (for spatio-temporal
properties) for the STREL formulas reported in Table 1.

The first three formulas, which are named (P1), (P2), and
(P3), contain only spatial properties, whereas the last four,
named (SPT1), (TSP1), (SPT2), and (TSP2), are used to eval-
uate the interplay between temporal and spatial operators.

Tables 2 and 3 show the execution time of the monitoring
procedure with different values of N and K .

First of all, we can observe that for property (P1), the one
based on operator reach, the execution time does not change
if a static or dynamic spatial model is considered. Moreover,
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Table 2 The comparison of the computational time (in sec) with re-
spect to N nodes and K time steps for formulas (P1), (P2), and (P3)
described in Table 1, for Boolean and quantitative semantics. (S) indi-
cates a static graph, otherwise, when it is not specified, it is a dynamic
graph (edges’ values can evolve in time)

Boolean Quantitative
N

∖
K 1 10 100 1 10 100

P1
16 0.011 0.014 0.037 0.006 0.024 0.13
16 (S) 0.011 0.015 0.0370 0.005 0.024 0.124
256 0.009 0.037 0.239 0.030 0.140 1.139
256 (S) 0.009 0.036 0.251 0.029 0.13 1.113
1024 0.028 0.125 0.987 0.124 0.724 7.344
1024 (S) 0.022 0.136 0.990 0.123 0.704 6.706

P2
16 0.008 0.009 0.051 0.003 0.008 0.056
16 (S) 0.008 0.004 0.014 0.003 0.007 0.053
256 0.093 0.276 2.244 0.197 0.861 7.649
256 (S) 0.083 0.077 0.293 0.236 0.701 5.990
1024 1.211 5.422 47.698 4.266 23.277 215.398
1024 (S) 0.500 0.711 1.826 3.901 18.167 159.794

P3
16 0.007 0.007 0.042 0.001 0.002 0.013
16 (S) 0.005 0.002 0.009 0.001 0.001 0.007
256 0.094 0.264 1.916 0.044 0.212 1.892
256 (S) 0.088 0.070 0.404 0.031 0.072 0.533
1024 1.128 6.410 60.706 1.145 6.674 58.82
1024 (S) 0.655 1.118 5.011 0.804 1.799 4.620

the monitoring is faster when we consider the Boolean do-
main. This is because when a reach monitor is computed,
at each time step the monitored values are propagated on
the graph to compute a fixpoint. This means that at each
time step the spatial model is reconsidered. Moreover, the
Boolean monitoring terminates first due to the fact that, with
this domain, in general, a fixpoint is reached with a limited
number of iterations.

Computational times for property (P2) are different. This
property involves operator escape, and its monitor consists
of flooding of values over the spatial model and of the com-
putation of the matrix of minimum distances. For this reason,
the execution time of monitors for (P2) changes significantly
if we consider static or dynamic models. This difference is
amplified when the monitoring of property (P3) is consid-
ered. In this case (where operator everywhere is used),
monitoring mainly consists of the computation of the dis-
tance matrix, which is computed only one time in a static
model, whereas it is computed at each time step when a dy-
namic spatial model is considered. We can also observe that
for property (P3), differently from (P1) and (P2), there is

Table 3 The comparison of the computational time (in sec) with re-
spect to N nodes and K time steps for formulas (SPT1), (TSP2), (SPT2),
and (TSP2) described in Table 1 for Boolean and quantitative seman-
tics. (S) indicates a static graph; otherwise, when not specified, it is a
dynamic graph (the values of edges can evolve in time)

Boolean Quantitative
N

∖
K 1 10 100 1 10 100

SPT1
16 0.012 0.015 0.039 0.005 0.015 0.085
16 (S) 0.012 0.014 0.039 0.006 0.021 0.124
256 0.009 0.038 0.244 0.027 0.134 1.027
256 (S) 0.010 0.042 0.243 0.027 0.119 1.042
1024 0.022 0.134 0.997 0.124 0.691 6.276
1024 (S) 0.030 0.153 0.989 0.131 0.691 6.557

TSP1
16 0.014 0.015 0.037 0.006 0.024 0.093
16 (S) 0.013 0.016 0.042 0.005 0.016 0.091
256 0.008 0.041 0.24 0.029 0.124 1.13
256 (S) 0.008 0.040 0.242 0.029 0.129 1.101
1024 (S) 0.028 0.128 0.988 0.122 0.722 6.713
1024 0.03 0.144 0.997 0.126 0.731 6.927

SPT2
16 0.001 0.001 0.042 0.001 0.001 0.008
16 (S) 0.001 0.002 0.003 0.002 0.002 0.003
256 0.102 0.255 1.928 0.042 0.198 1.664
256 (S) 0.070 0.073 0.075 0.032 0.078 0.572
1024 1.117 6.242 54.588 1.19 5.824 62.253
1024 (S) 0.672 1.610 1.786 0.862 1.174 5.289

TSP2
16 0.001 0.007 0.041 0.001 0.008 0.043
16 (S) 0.001 0.002 0.007 0.001 0.002 0.008
256 0.106 0.255 1.904 0.044 0.22 1.810
256 (S) 0.066 0.089 0.243 0.033 0.068 0.509
1024 1.175 6.428 60.583 1.272 6.803 61.952
1024 (S) 0.553 1.224 4.476 0.826 2.086 5.121

no difference between Boolean and quantitative monitoring,
which is because for the somewhere and everywhere oper-
ators, we do not use a flooding algorithm, but we just need
to select the nodes that satisfy the distance constraints.

Finally, the values reported in Table 3 show that the in-
terplay between spatial and temporal properties does not
affect the monitoring time. Indeed, the times needed to mon-
itor properties (STP1) and (PST1), which use reach with
eventually, have similar orders of magnitude to those re-
ported in Table 2 for property (P1). Similarly, the time needed
to monitor (STP2) and (PST2) is similar to the time needed
to monitor (P3). Note that, as we have already observed for
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Table A1 Monitoring function

m(S, �x, μ, t , �) = ι(μ, �x(�, t))

m(S, �x,¬ϕ, t , �) = ¬m(S, �x, ϕ, t , �)

m(S, �x, ϕ1 ∧ ϕ2, t , �) = m(S, �x, ϕ1, t , �) ∧m(S, �x, ϕ2, t , �)

m(S, �x, ϕ1 U[t1 ,t2] ϕ2, t , �) =
∨

t ′∈t+[t1 ,t2](m(S, �x, ϕ2, t
′, �) ∧

∧
t ′′∈[t ,t ′]m(S, �x, ϕ1, t

′′, �)
)

m(S, �x, ϕ1 S[t1 ,t2] ϕ2, t , �) =
∨

t ′∈t−[−t2 ,−t1]

(
m(S, �x, ϕ2, t

′, �) ∧
∧

t ′′∈[t ′ ,t ]m(S, �x, ϕ1, t
′′, �)

)

m(S, �x, ϕ1 R
f :A→A

[d1 ,d2]
ϕ2, t , �) =

∨
τ∈Routes(S(t ),�)

∨
i:
(
d

f
τ [i]∈[d1 ,d2]

) (m(S, �x, ϕ2, t , τ[i]) ∧
∧

j<i m(S, �x, ϕ1, t , τ[j])

m(S, �x, E f :A→A

[d1 ,d2]
ϕ, t , �) =

∨
τ∈Routes(S(t ),�)

∨
�′∈τ :

(
d

f

S(t )
[� ,�′]∈[d1 ,d2]

) ∧
i≤τ(�′)m(S, �x, ϕ, t , τ[i]))

(P3), monitoring of (STP2) and (PST2) is less expensive
when a static spatial model is considered.

8 Conclusions

MoonLight provides a lightweight and very flexible mon-
itoring tool for temporal and spatio-temporal properties of
mobile and spatially arranged CPS. The possibility to use
dedicated Matlab™ and Python interfaces enables us
to easily integrate MoonLight as a component in other
toolchains implementing more sophisticated computer-aided
verification and synthesis techniques such as falsification
analysis and parameter synthesis. The reader can find many
other interesting examples in the MoonLight GitHub Repos-
itory. In the near future, we plan to extend the tool with new
functionalities, such as supporting parallelization, to speed
up the computation and online monitoring. Furthermore, we
are considering other operators to increase the expressivity
of the logic.

Appendix: STREL semantics

The semantics of STREL is reported in Table A1. We report
the Boolean semantics; the quantitative semantics can be
derived by substituting ∨, ∧ with min, max; see [45] for
more detail. The semantics is evaluated pointwise at each
time and at each location, and it is defined in a recursive way.
Given a formula φ, the function m(S, �x, φ, t,�) corresponds
to the evaluation of the formula at time t in the location � of
the trajectory �x and spatial model S.

The function ι : AP× Dn
1 → B is the signal interpretation

function and translates the input trace in a Boolean signal for
each atomic proposition in AP.

The negation operator is interpreted with the negation
function ¬ such that ¬ true = false. The conjunction
operator ϕ1∧ϕ2 is interpreted as usual: m(S, �x, ϕ1∧ϕ2, t,�) =
true iff both m(S, �x, ϕ1t,�) and m(S, �x, ϕ2t,�) are equal to
true.

The temporal operators work as usual: (S(t), �x(�, t)) sat-
isfies ϕ1 U[t1 ,t2] ϕ2 iff it satisfies ϕ1 from t until, in a time
between t1 and t2 time units in the future, ϕ2 becomes true,
and (S(t), �x(�, t)) satisfies ϕ1 S[t1 ,t2] ϕ2 iff it satisfies ϕ1 from
now since, in a time between t1 and t2 time units in the past,
ϕ2 was true.

For the spatial operators, we denote by f the distance
function (e.g., int hop or real dist), d f

τ [i] is the dis-
tance over the route τ up to index i, and d f

S(t)
[�,�′] is the

minimum distance between locations � and �′ with respect
to the spatial modelS(t). Then we have that (S(t), �x(�, t)) sat-
isfies ϕ1 R[d1 ,d2]

ϕ2 if and only if it satisfies ϕ2 in a location
�′ reachable from � through a route τ, with length d f

τ [�
′]

belonging to the interval [d1,d2], and such that τ[0] = �

and all its elements with index less than τ(�′) satisfy ϕ1;
(S(t), �x(�, t)) satisfies E f

[d1 ,d2]
ϕ if and only if there exist a

route τ, a location �′ ∈ τ, and an index k ∈ Z such that
τ[0] = �, τ[k] = �′, and dS[�,�′] belongs to the interval
[d1,d2], whereas �′ and all the elements τ[0], . . . , τ[k − 1]
satisfy ϕ.
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