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Abstract. The safety of cyber-physical systems rests on the correctness
of their monitoring mechanisms. This is problematic if the specification
of the monitor is implemented manually or interpreted by unreliable
software. We present a verifying compiler that translates specifications
given in the stream-based monitoring language Lola to implementations
in Rust. The generated code contains verification annotations that enable
the Viper toolkit to automatically prove functional correctness, absence
of memory faults, and guaranteed termination. The compiler parallelizes
the evaluation of different streams in the monitor based on a dependency
analysis of the specification. We present encouraging experimental results
obtained with monitor specifications found in the literature. For every
specification, our approach was able to either produce a correctness proof
or to uncover errors in the specification.

1 Introduction

Cyber-physical systems are inherently safety-critical, because failures immedi-
ately impact the physical environment. A crucial aspect of the development of
such systems is therefore the integration of reliable monitoring mechanisms. A
monitor is a special system component that typically has broad access to the
sensor readings and the resulting control decisions. The monitor assesses the
system’s health by checking its behavior against a specification. If a violation is
detected, the monitor raises an alarm and initiates mitigation protocols such as
an emergency landing or a graceful shutdown.

An obvious concern with this approach is that the safety of the system rests
on the correctness of the monitor.Quis custodiet ipsos custodes? For simple spec-
ifications, this is not a serious problem. An ltl [29] specification, for example,
can be translated into a finite-state automaton that is proven to correspond to
the semantics of the specification. Implementing such an automaton correctly as
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a computer program is not difficult. For more expressive specification languages,
establishing the correctness of the monitor is much more challenging. Especially
problematic is the use of interpreters, which read the specification as input and
then rely on complicated and error-prone software to interpret the specifica-
tion dynamically at runtime [5, 11, 13–15]. Recently, however, much effort has
gone into the development of compilers. Compared to a full-scale interpreter,
the code produced by a compiler for a specific specification is fairly simple and
well-structured. Some compilers even include special mechanisms that increase
the confidence in the monitor. For example, the RTLola compiler [6] generates
vhdl code that is annotated with tracing information that relates each line
of code back to the specific part of the specification it implements. The Copilot
compiler [26] produces a test suite for the generated C code. The framework even
includes a bounded model checker, which can check the correctness of the out-
put for input sequences up to a fixed length. However, none of these approaches
actually proves the functional correctness of the monitor.

In this paper, we present a verifying compiler that translates specifications
given in the stream-based monitoring language Lola [12] to implementations in
Rust1. The generated code is fully annotated with formal function contracts, loop
invariants, and inline assertions, so that functional correctness and guaranteed
termination can be automatically verified by the Viper [22] toolkit, without any
restriction on the length of the input trace. Since the memory requirements of
a Lola specification can be computed statically, this yields a formal guarantee
that on any platform that satisfies these requirements, the monitor will never
crash and will always compute the correct output.

A major practical concern for any compiler is the performance of the gener-
ated code. Our Lola-to-Rust compiler produces highly efficient monitor imple-
mentations because it parallelizes the code for the evaluation of the specifica-
tions. Since Lola is a stream-based specification language, it exhibits a highly
modular and memory-local structure, i.e., the computation of a stream writes
only in its own local memory, although it may read from the local memory of
several other processes. The compiler statically analyzes the dependencies be-
tween the streams, resulting in a partial evaluation order. To prove correctness,
it is shown that streams that are incomparable with respect to the evaluation
order can indeed be evaluated in parallel.

We have used our compiler to build monitors from specifications of varying
sizes found in the literature. In our experience, the compiler itself scales very
well. The verification in Viper, however, is expensive. It appears that the running
times of the underlying smt solver Z3 [21] vary greatly, even for different runs
on the same monitor and specification. Nevertheless, we have been successful
in all our benchmarks in the sense that the compiler either generated a verified
monitor or uncovered an error in the specification. This is a major step forward
towards the verified monitoring of real-life safety-critical systems.

1
https://www.rust-lang.org/

https://www.rust-lang.org/
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2 Introduction to Lola

The source language of our verifying compiler is the stream-based monitoring
language Lola [12]. A Lola monitor is a reactive component that translates, in an
online fashion, input streams into output streams. In each time step, the monitor
receives new values for the input streams and produces new values for the out-
put streams in accordance with the specification. In principle, the monitoring
can continue forever; if the monitor is terminated, it wraps up the remaining
computations, produces a final output, and shuts down. Lola specifications are
declarative in the sense that the semantics leaves a lot of implementation free-
dom: the semantics defines how specific values are combined arithmetically and
logically, but the precise evaluation order and the memory management are de-
termined by the implementation.

A Lola specification defines a set of streams. Each stream is an ordered
sequence of typed values that is extended throughout the monitor execution.
There are three kinds of streams:

Input Streams constitute the interface between the monitor and an external
data source, i.e., the system under scrutiny.

Output Streams compute new values based on input streams, other output
streams, and constant values. The computed values contain relevant infor-
mation regarding the performance and health status of the system.

Triggers constitute the interface between the monitor and the user. Trigger
values are binary and indicate the violation of a property. In this case, the
monitor alerts the user.

Syntactically, a Lola specification is given as a sequence of stream decla-
rations. Input stream declarations are of the form ij : Tj, where ij is an input
stream and Tj is its type. Output stream and trigger declarations are of the form
sj : Tj = ej(i1, . . . , im, s1, . . . , sn), where i1, . . . , im are input streams, s1, . . . , sn
are output streams, and the ej are stream expressions. A stream expression con-
sists of constant values, streams, arithmetic and logic operators f(e1, . . . , ek),
if-then-else expressions ite(b, e1, e2), and stream accesses e[k, c], where e is a
stream, k is the offset, and c is the constant default value. Stream accesses are
either synchronous, i.e., a stream accesses the latest value of a stream, or asyn-
chronous, i.e., a stream accesses a past or future value of another stream.

The example specification shown in Listing 1.1 monitors the altitude of a
drone, detects whether the drone flies below a given minimum altitude or above
a given maximum altitude for too long, and raises an alarm if needed. The
input stream altitude contains sensor information of the drone. The output
stream tooLow checks whether the altitude is lower than the given minimum al-
titude of 200 in the last, current, and next step, denoted by altitude[-1,0],
altitude, and altitude[1,0], respectively. If this is the case, a trigger is
raised. Analogously, tooHigh checks whether the altitude is above the given
maximum altitude in the last, current, and next step, and a trigger is raised in
this case. The evaluations of tooHigh and tooLow try to access the second
to last value of altitude as well as the last and the next one. If altitude
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input altitude: Int32

output tooLow: Bool :=

altitude[-1,0] < 200 & altitude < 200 & altitude[1,0] < 200

output tooHigh: Bool :=

altitude[-1,0] > 600 & altitude > 600 & altitude[1,0] > 600

trigger tooLow "Flying below minimum altitude."

trigger tooHigh "Flying above maximum altitude."

Listing 1.1: A Lola specification monitoring the altitude of a drone. The output
stream tooLow (tooHigh) checks whether the drone flies below (above) a given
minimum (maximum) altitude in the last, current, and next step. If this is the
case, an alarm is raised.

t

b

a

−1 0 1.1 1.2 2.1 2.2 3.1 3.2 . . .

− − 1 2 3 . . .

− − 1 2 3 . . .

(a) The result of evaluating the output
streams respecting the evaluation order.

t

a

b

−1 0 1.1 1.2 2.1 2.2 3.1 3.2 . . .

− − 1 1 2 . . .

− − 1 2 3 . . .

(b) The result of evaluating the output
streams in order of their declaration.

Fig. 1: Two different evaluations of the output streams a and b, where a accesses b
synchronously and b accesses its previous value. Both accesses default to 0 and
both a and b increase the obtained value by 1.

does not have at least two values, the accesses with offset −1 fail and the default
value, in this case 0, is used. If altitude ceases to produce values, the accesses
with offset 1 fail. Hence, in contrast to negative offsets, the default value for
accesses with positive offset is used at the end of the execution.

The semantics of Lola is defined in terms of evaluation models. Intuitively,
an evaluation model consists of evaluations of each output stream of the speci-
fication. The evaluation is a natural translation of the stream expressions. The
full formal definition is given in [12].

Definition 1 (Evaluation Model [12]). Let ϕ be a Lola specification over
input streams i1, . . . , iℓ and output streams s1, . . . , sn. The tuple 〈σ1, . . . , σn〉
of streams of length N + 1 is called an evaluation model if for each equation
sj = ej(i1, . . . , iℓ, s1, . . . , sn) in ϕ, 〈σ1, . . . , σn〉 satisfies σj(k) = v(ej)(k) for
0 ≤ k ≤ N , where v(ej)(k) evaluates the stream expression ej at position k.

Synchronous accesses harbor a pitfall for the monitor realization as illustrated
in Figure 1. Consider the corresponding Lola specification:

output a: Int32 := b[ 0, 0] + 1

output b: Int32 := b[-1, 0] + 1



Verified Rust Monitors for Lola Specifications 5

Here, a accesses b synchronously, while b accesses its previous value. The
evaluation of a tries to access the current value of b and increases the result by
one, which yields the next stream value of a. In contrast, the evaluation of b tries
to access the last value of b and increases the result by one to determine the next
stream value of b. Figure 1a depicts the resulting output. If the monitor evaluates
the streams in order of their declaration, however, the resulting output, shown
in Figure 1b, differs from the expected one. The reason is that the current value
of b changes depending on whether or not b has already been extended when
accessing the value. This problem is solved by respecting the evaluation order,
a partial order on the output streams. It is induced by the dependency graph of
a Lola specification.

Definition 2 (Dependency Graph [12]). The dependency graphDϕ = (V,E)
of a Lola specification ϕ is a weighted directed multigraph. Each vertex represents
a stream and each edge an access operation. Thus, s ∈ V iff s is a stream or
trigger in ϕ and (s1, n, s2) ∈ E for s1, s2 ∈ V , n ∈ N iff the stream expression
of s1 contains an access to s2 with offset n.

Based on the dependency graph, d’Angelo et al. define the shift of a stream [12].
Intuitively, the shift of s indicates how many steps the evaluation of its expres-
sion needs to be delayed. For instance, suppose the delay is n > 0. Then the
value of s for time t can be computed at time t+ n.

Definition 3 (Shift [12]). For a Lola specification ϕ, the shift ∆(s) of a stream
s is the greatest weight of a path through the dependency graph of ϕ originating
in s: ∆(s) = max(0,max {w +∆(s′)|(s, w, s′) ∈ E}).

The shift allows us to define an order in which streams need to be evaluated.
For this, we define the set of synchronized edges E∗ where the weight of a
synchronized edge (s, n, s′) ∈ E∗ indicates when s can access s′ successfully
with an offset of n. Let E∗ = {(s,∆(s) − w −∆(s′), s′) | (s, w, s′) ∈ E}.

Definition 4 (Evaluation Order). The evaluation order ≤eo is a partial or-
der on the output streams of a Lola specification ϕ. Let Dϕ = (V,E) be the
dependency graph of ϕ. The evaluation order is the transitive closure of a rela-
tion ≺ with s ≺ s′ iff (s′, 0, s) ∈ E∗.

Clearly, we obtain b ≤eo a for the above Lola specification, yielding the ex-
pected result depicted in Figure 1a. For the Lola specification from Listing 1.1,
however, the output streams tooLow and tooHigh are incomparable accord-
ing to the evaluation order. A total evaluation order on the output streams,
denoted ≤+

eo, is obtained by relating incomparable streams arbitrarily.

Remark 1 (On Asynchronous Accesses and Off-by-one Errors). It is fairly easy
to make off-by-one errors in asynchronous stream accesses. When two streams
within one layer access each other asynchronously, one of the offsets needs to be
decreased by 1, depending on which stream is evaluated first. This cannot be
avoided for any ≤+

eo. To simplify the presentation, we will ignore this issue in the
remainder of the presentation, the correct adjustment of the indices is, however,
implemented in the compiler.
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i

o

− −

. . .

− −

− − − −

Fig. 2: Illustration of stream accesses in different phases of the execution. An
output stream o accesses an input stream i with offsets −2 and +2. In the prefix
(postfix) of the execution, the past (future) accesses need to be substituted by
their default values.

Specifications where the dependency graph has no positive cycles are called
efficiently monitorable: such specifications can be monitored with constant mem-
ory, and an output value can always be produced after a constant delay [12]. All
example specifications considered in this paper are efficiently monitorable.

3 From Lola to Rust

The compilation proceeds in two steps. First, the Lola specification is analyzed
to determine inter-stream dependencies, the overall memory requirement, and
the different phases of the monitoring process. Second, the compiler produces
Rust code that implements the specification.

3.1 Specification Analysis

Execution Pre- and Postfix. Refer back to the Lola specification in Listing 1.1.
Another beneficial property of the synchronous input model is that, starting from
t = 2, both stream accesses with offset−1 to altitudewill always succeed since
the offset refers to the last evaluation of altitude which did already happen at
t ≥ 1. For a more general analysis, suppose an output stream s accesses another
stream s′ with an offset of n. If n is non-positive, then accesses may fail until
t = ∆(s)−n−∆(s′), i.e., they will not fail from ∆(s)−n−∆(s′) + 1 on. If n is
strictly positive, however, the evaluation of s needs to be delayed by ∆(s) − n,
i.e., until s′ received the respective value. By generally delaying the execution
of s, all accesses to s′ continue to succeed until s′ ceases to produce new values.
As soon as this is the case, the monitor needs to evaluate s for ∆(s) − n more
times to compensate for the delay. For instance, the evaluations of tooLow and
tooHigh both have to be delayed by one step.

This behavior induces the structure of the monitor execution: it starts with
a prefix where past accesses always fail, loops in the regular execution where all
accesses always succeed, and ends in a postfix where future accesses always fail.

Figure 2 illustrates stream accesses in the different phases. It shows an output
stream o that accesses an input stream i with an offset of −2 and 2. In the first
two iterations of the monitor execution, i.e., in the prefix, the accesses to the
past values will fail, requiring the monitor to use the default values instead.
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Afterwards, all accesses succeed until the input stream ends. In the last two
evaluations, i.e., in the postfix, the future accesses fail and need to be replaced
by the default values.

While the shift only concerns time, it can also be used to compute the memory
requirement of a stream, i.e., the number of values of a single stream that can
be relevant at the same time. If a stream s of type T has a memory requirement
µ(s) = i, the monitor needs to reserve i · size(T ) bytes of memory for s.

Definition 5 (Memory Requirement). The memory requirement of a de-
pendency (s′, w, s) ∈ E is determined by the shifts of the streams as well as the
weight w of the dependency, i.e., the offset of the stream access: ∆(s)−∆(s′)−w.
The memory requirement of a stream is thus the maximum requirement of any
outgoing dependency: µ(s) = max {∆(s)−∆(s′)− w | (s′, w, s) ∈ E}.

Hence, the compilation determines three key values for each specification.

Definition 6 (Memory Consumption, Prefix- and Postfix Length). Let
µ∗ϕ, η

←
ϕ , and η→ϕ be the memory consumption, prefix length and postfix length

of ϕ, respectively, defined as follows:

µ∗ϕ =
∑

s∈ϕ

{µ(s) · size(Ts)}

η←ϕ = max
s∈ϕ

{∆(s) + µ(s)}

η→ϕ = max
s∈ϕ

{∆(s)}

Furthermore, the evaluation order ≤eo of the output streams of a Lola spec-
ification induces the so-called evaluation layers.

Definition 7 (Evaluation Layer). Let ϕ be a Lola specification and let ≤eo

be the evaluation order induced by its dependency graph. If Layer (s) = k for an
output stream s, then there is a strictly decreasing sequence of k streams with
respect to ≤eo starting in s.

Intuitively, an evaluation layer consists of all streams that are incomparable
according to the evaluation order. For the Lola specification from Listing 1.1, for
instance, the output streams tooLow and tooHigh are incomparable according
to the evaluation order. Thus, they are contained in the same evaluation layer.
Evaluation Layers are also used to identify independent streams and thus to
enable their concurrent evaluation as described in Sect. 5.

3.2 Code Generation

The monitor code starts with a prelude which declares data structures and helper
functions. It also contains the main function starting with the static allocation
of the working memory. The remainder of the main function is the operative
monitoring code consisting of three components: the execution prefix, themonitor
loop, and the execution postfix. The general structure is illustrated in Listing 1.2,
details follow in the remainder of this section.
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Prelude

Monitor Loop

Execution Prefix

Execution Postfix

struct Memory { ... }
impl Memory { . . . }
[[ Evaluation Functions ]]
fn get input() −>

Option<(Ts1
, . . . , Tsℓ

)> {

[[ Communicate with system ]]
}
fn emit(output: &(Ts1

, . . . , Tsn )) {

[[ Communicate with system ]]
}
fn main() {
let mut memory = Memory::new();
let early exit = prefix(&mem);
if !early exit {

while let Some(input) = get input() {
mem.add input(&input1);
[[ Evaluation Logic ]]
}
}
postfix(&mem);
}

fn prefix(mem: &mut Memory) −> bool {
if let Some(input) = get input() {

mem.add input(&input);
[[ Evaluation Logic ]]

} else {
return true // Jump to Postfix.
}
[[ Repeat η←ϕ times. ]]

false // Continue with Monitor Loop.
}

fn postfix(mem &Memory) {
[[ Evaluation Logic ]]
[[ Repeat η→ϕ times. ]]

}

Listing 1.2: Structure of the generated Rust code.

Prelude. The prelude declares several functions required throughout the monitor
execution and declares as well as allocates the working memory. The functions
consist of two I/O functions and evaluation functions.

The get_input() -> Option<(Ts1 , . . . , Tsℓ)> function, where Ts1 , . . . , Tsℓ

are the types of all input streams, models the receipt of input data. It produces
either None if the execution of the system under scrutiny terminated, or Some(v),
where v is an ℓ-tuple containing the latest input values. Conversely, the function
emit(&(Tsℓ+1

, . . . , Tsk)) conveys a (k − ℓ)-tuple of output values to the system.
For each stream, there are evaluation functions in several variants depend-

ing on whether they will be called in the prefix, the loop, or the postfix. The
implementations differ only in the logic accessing other streams. The Lola se-
mantics dictates that the evaluation needs to check whether the accessed value
exists and to substitute it with the respective default value if needed. However,
an analysis of the dependency graph reveals statically which accesses will fail.
Thus, providing several implementations makes the need for such a check during
runtime redundant.

The working memory is a struct aptly named Memory. It consists of a static
array for each stream in the specification and reads as follows:

struct Memory { s1: [Ts1, µ(s1)], . . . , sk: [Tsn, µ(sn)] }

Here, s1, . . . , sk are all input and output streams with types T1, . . . , Tk. The
monitor allocates Memory once in its main function, keeps it on the stack, and
grants read access to functions evaluating stream expressions.

Execution Prefix. The prefix consists of η←ϕ conditional blocks, each processing
an input event of the system under scrutiny. If the system terminates before
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the prefix concludes, the function returns true, indicating an early termina-
tion, which prompts the main function to initiate the postfix. Otherwise, the
input is added to the working memory and, evaluation layer by evaluation
layer, each output stream is evaluated in a dedicated function as can be seen
in the following code snippet. For this, assume that the specification has λ∗

evaluation layers, i.e., λ∗ = max {x | ∃s1, . . . , sx : s1 ≤eo · · · ≤eo sx} Moreover,
λi = |{s | Layer (s) = i}| denotes the number of streams within evaluation layer
i ≤ λ∗. Lastly, let si,j ≤

+
eo si,j+1 with Layer (si,j) = Layer (si,j+1) = i.

let val_s1,1 = eval_pre_1_s1,1(&Memory);

...

let val_s1,λ1
= eval_pre_1_s1,λ1

(&Memory);

memory.write_layer_1(val_s1,1, ..., val_s1,λ1
)

...

let val_sλ∗,1 = eval_pre_sλ∗,1(&Memory);

...

let val_sλ∗,λλ∗
= eval_pre_sλ∗,λλ∗

(&Memory);

Memory.write_layer_λ∗

(val_sλ∗,1, ..., val_sλ∗,λλ∗
);

if val_st1 == true { emit(mt1) }

Note that, as indicated in the prelude, each conditional block calls a different
set of evaluation functions. This allows for a fine-grained treatment of stream
accesses, improving the overall performance at the cost of greater code size. Also,
the call passes a single argument to the evaluation function: an immutable refer-
ence for Memory. As a result, the Rust type system guarantees that the evalua-
tion does not mutate its state. The function returns a value that is committed to
Memory after fully evaluating the current layer. The bodies of these functions are
straight-forward translations of stream expressions: each arithmetic and logical
expression has a counterpart in Rust. Stream lookups access the only argument
passed to the function, i.e., a read-only reference to the working memory.

The write_layer_i functions commit computed stream values to Memory.
After µ(s) iterations, the memory evicts the oldest data point for stream s, thus
constituting a ring buffer.

Monitor Loop The main difference between the monitor loop and the prefix is,
as the name indicates, that the former consists of a loop. The loop terminates
as soon as the system ceases to produce new inputs. At this point, the monitor
transitions to the execution postfix.

Within the loop, the monitor proceeds just as in the prefix except that the
evaluation functions are agnostic to the current iteration number. In the evalua-
tion, all stream accesses are guaranteed to succeed rendering the evaluation free
of conditionals except when the stream expression itself contains one.

Execution Postfix The structure of the execution postfix closely resembles the
prefix except for two differences: The postfix does not check for the presence
of new input values and calls a different set of evaluation functions, specifically
tailored for the postfix iteration.
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InputSystem EvaluationMonitor

GMAssertions

InvariantsProof

Fig. 3: Information flow between the monitor and the ghost memory.

Code Characteristics The generated code exhibits two advantageous characteris-
tics. First, the trade-off between an increase in code size by quasi-duplicating the
evaluation functions leads to an excellent performance in terms of running time.
The functions require few arguments, avoid conditional statements as much as
possible, and utilize memory locality. This is further emphasized by the lack of
dynamic memory allocation and utilization of native datatypes. Second, the clear
code structure, especially with respect to memory accesses, drastically simplifies
reasoning about the correctness of the code.

4 Verification

Our goal is to prove that the verdicts produced by the monitor correspond to
the formal semantics. The main challenge is that the the evaluation model of the
Lola semantics refers to unbounded data sequences, disregarding any memory
concerns. The implementation, however, manages the monitoring process with
only a finite amount of memory. As a result, the Lola semantics may refer to
data values long after they have been discarded in the implementation. Hence,
the relation between the memory content and the evaluation model, and thus
the correctness of the computation, is no longer apparent.

We solve this problem with the classic proof technique of introducing so-
called ghost memory. The compilation introduces another data structure named
Ghost Memory (GM) which is a wrapper for Rust vectors, i.e., dynamically grow-
ing sequences of data. Whenever the monitor receives or computes any data, it
commits it to the GM. The GM’s size thus obviously exceeds any bound, voiding
the memory guarantees. However, the ghost memory’s sole purpose is to aid the
verification and not the monitor; information flows from the program into the
GM and the proof, but remains strictly separated from the monitor execution.
This allows for removing the GM after successfully verifying the correctness of
the monitor without altering its behavior. Figure 3 illustrates the flow of infor-
mation between the monitor and GM. Clearly, the monitor remains unaffected
when removing any proof artifacts.
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The correctness proof has two major obligations: proving compliance between
values in the GM and the working memory, and proving the correctness of the
trigger evaluations with respect to the ghost memory. These obligations are
encoded as verification annotations, such that the Viper framework verifies them
automatically. The compilation generates additional annotations to guide the
verification process. Viper annotations fall into the following categories:

Function Contracts Annotations in front of a function f consist of precondi-
tions and guarantees. Viper imposes constraints on the function caller and
the function body itself. Each call to f is replaced by an assertion of the
preconditions of f, prompting Viper to prove their validity, and an assump-
tion of the guarantees. In a separate step, Viper assumes the preconditions
and verifies that the guarantees hold after executing the function body. Note
that the Rust type system already ensures that references passed to the func-
tion are accessible and cannot be modified or freed unless they are explicitly
declared mutable.

Loop Invariants Viper analyzes while-loops similarly to functions in three
steps. First, the code leading to the loop needs to satisfy the invariants.
Second, Viper assumes both the loop invariant and the loop condition to
hold and verifies that the invariant again holds after the execution of the
body. Lastly, Viper assumes the invariant and the negation of the loop con-
dition to hold for the code after the loop.

Inline Assertions Both loop invariants and function contracts impose implicit
assertions on the code. Viper allows for supplementing them with explicit
inline assertions using the Rust assert! macro. Usually, the macro checks
an expression during runtime. Viper, however, eliminates the need for this
dynamic check as it verifies the correctness statically and transforms it into
an assumption for the remainder of the verification. Thus, the assertions
serve a similar function as the ghost memory: they are a proof construct and
do not influence the monitor per se (cf. Figure 3).

Annotation Generation. The compilation inserts annotations at several key lo-
cations. First, as an example for function annotations, consider a function that
retrieves a value of the stream s from the working memory. The function takes
the relative index of the retrieved value as single argument, i.e., an index of 1
accesses the second to newest value. The annotation requires that the index
must not exceed the memory reserved for s. Syntactically, this results in the fol-
lowing annotation in front of the function head: #[requires="index < µ(s)"].
Moreover, the function needs to guarantee that the return value corresponds
to the respective value stored in Memory. This is expressed by the annota-
tion #[ensures="index == i ==> result == self.s[i]"] for each i ≤ µ(s).
The remaining function annotations follow a similar pattern, i.e., they require
valid arguments, and ensure correct outputs as well as the absence of undesired
changes. Note that the ghost memory is essentially a wrapper for Rust vectors
as they represent a growing list of values. Thus, functions concerning the ghost
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memory carry the standard annotation ensuring correctness of the vector as
presented in the Viper examples.2

Second, the loop has several entry checks that are expressed as inline as-
sertions. These ensure that the iteration count is η←ϕ and that the length of
the ghost memory for a stream s is η←ϕ − ∆(s). This is necessary because the
loop invariant asserts equivalence between an excerpt of the ghost memory and
the working memory. While the existence of all accessed values in the working
memory is guaranteed due to the static allocation, the GM grows dynamically.
Hence, the compilation adds the entry checks.

In terms of memory equivalence, it remains to be shown that all values in
the working memory correspond to the respective entry in the ghost memory.
Formally, let m be the working memory and let g be the ghost memory where
index 0 marks the latest value. Furthermore, let η be the current iteration count.
Then, the invariant checks:

∀s : ∀i : (0 ≤ i < µ(s) =⇒ ms[i] = gs[i]). (1)

At loop entry, µ(s) = η←ϕ −∆(s) = η−∆(s) is the number of iterations in which
a value for s was computed. In each further iteration of the loop, the invariant
checks that the former µ(s) − 1 entries remained the same and that the new
values in the ghost memory g and the working memory m are equal. The first of
these checks is not strictly necessary for the proof because it immediately follows
from the function contracts of the helper functions. However, after completing
one loop iteration, Viper deletes prior knowledge about all variables that were
mutated in the loop. Further reasoning about these variables is thus solely based
on the loop invariants.

To express Equation (1) in Viper, the compilation needs to statically resolve
the universal quantification over the streams. Thus, for each stream s, the compi-
lation generates the annotation #[invariant="forall i: usize :: (0 <=

i && i < µ(s)) ==> mem.get_s(i) == gm.get_s(iter - 1)"], where iter
is a variable denoting the current iteration, mem is the working memory, and gm

is the ghost memory. Viper is able to handle the remaining universal quantifica-
tion over i. However, the compilation reduces the verification effort further by
unrolling it. This is possible since the memory requirement µ(s) of a stream s is
determined statically.

Lastly, the compilation introduces inline assertions after the evaluation of
stream expressions, i.e., in the prefix, postfix, and loop body. These annotations
show that computed values are correct when assuming that the values retrieved
from the working memory are correct as well. This argument is well-founded
because the compilation substitutes failing stream accesses by their respective
default values. Thus, any value retrieved from Memory was computed in an earlier
iteration or layer and therefore proven correct by Viper.

It only remains to be shown that the stream expression is properly evaluated.
Expressions consist of arithmetic or logical functions, constants, and stream

2 See e.g. the verified solution for the Knapsack Problem:
https://github.com/viperproject/prusti-dev/blob/master/prusti/tests/verify/pass/rosetta/Knapsack_Problem.rs.

https://github.com/viperproject/prusti-dev/blob/master/prusti/tests/verify/pass/rosetta/Knapsack_Problem.rs
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accesses. The former two can be trivially represented in Viper. Since the memory
is assumed to be correct and failing accesses are substituted by constants when
possible, accesses also translate naturally into Viper.

Conclusion. The validity of the assertions after the evaluation logic shows that
newly computed values are correct if the values in the working memory m and
the ghost memory g coincide. This fact is guaranteed by the loop invariant.
Furthermore, the inductive argument of the loop invariants allows us to conclude
that, if m were to never discard values, ms[i] = gs[i] for all streams s and i ≤ η.
Thus, m is a real subsequence of g, which is a perfect reflection of the evaluation
model. As a result, any trigger violation detected by the monitor realization
corresponds to a violation in the evaluation model for the same sequence of
input values; The realization is verifiably correct.

5 Concurrent Evaluation

Evaluating independent streams concurrently can significantly improve the per-
formance of the monitor. In the following, we devise an analysis of Lola specifica-
tions that enables safe parallelization. We observe two characteristics of Lola: the
computation of a stream expression can only read the memory of other streams,
and inter-stream dependencies are determined statically. The evaluation layers
are a manifestation of the second observation. They group streams which are
incomparable according to the evaluation order. Combined with the first obser-
vation, we can conclude that all streams within one layer may be computed in
parallel. Thus, the compilation spawns a new thread for each stream within the
layer with read access to the global memory. We add annotations to the code
that enable Viper to verify that the parallel execution remains correct.

The compilation capitalizes on Rust’s concurrency capabilities by evaluat-
ing different output streams in parallel. A major advantage of Rust is that its
ownership model enforces a strict separation of mutable and immutable data.
Any data point has exactly one owner who can transfer ownership for good or
let other functions borrow the data. Borrowing data is again either mutable or
immutable. If a function mutably borrows data, no other function, including the
owner, can read or write this data. Similarly, if a function immutably borrows
data, other functions and the owner can only read it. A consequence of this fine-
grained access management with static enforcement is that enabling concurrency
becomes rather easy when compared to languages like C.

Enabling the concurrent evaluation requires slight changes in the code gen-
eration. First, evaluation functions are annotated with #[pure]. This indicates
that a function mutates nothing but its local stack portion. For the evaluation
logic, the compiler still proceeds layer by layer, opening a scope for each of them.
In the scope, it generates code following the total evaluation order ≤+

eo. However,
rather than calling the respective evaluation functions directly, the parallelized
version spawns a thread for each stream and starts the evaluation inside it. As-
sume s1, . . . , sn constitute a single layer of a specification. The evaluation then
looks as follows:
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let (v_1, ..., v_n) = crossbeam::scope(|scope| {

let handle_s1 = scope.spawn(move |_| {

eval_s1(&memory)

});

...

let handle_sn = scope.spawn(move |_| {

eval_sn(&memory)

});

(handle_s1.join().unwrap(), ..., handle_sn.join().unwrap())

}).unwrap()

Note that the code snippet uses the Rust crate crossbeam, a standard concur-
rency library. A similar result can be achieved without external code by moving
the global memory to the heap and using the standard Rust thread logic.3

The correctness of this approach is an immediate consequence of the correct-
ness of the evaluation order and memory locality of streams. In particular, the
independence of streams within the same evaluation layer and the pureness of
the functions are crucial. The latter ensures that the function does not mutate
anything outside of its local stack. The former ensures that using pure evaluation
functions within the same layer is indeed possible. Thus, the order of execution
cannot change the outcome of the function, enabling the concurrent evaluation.

Note that spawning a thread for each stream evaluation is a double-edged
sword. While it can drastically reduce the monitor’s latency, each spawn induces
a constant overhead. Thus, reducing the number of spawns while increasing
the parallel computation time maximizes the gain. Consequently, the monitor
benefits stronger from the parallel evaluation when its dependency graph is wide,
enabling several cores to compute in parallel. Similarly, specifications with large
stream expressions benefit from the multi-threading because the share of parallel
computations increases. This lowers the relative impact of the constant thread-
spawning overhead.

6 Experimental Evaluation

The implementation of the compiler is based on the RTLola4 framework written
in Rust. The code verification uses the Rust-frontend of the Viper framework
called Prusti [2]. Prusti translates a Rust program into the Viper intermedi-
ate verification language, followed by a translation into an smt model, which
is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on

3 On a technical note: Rust’s type system requires the programmer to guarantee that
the global memory will not be dropped until all threads terminate. Thus, the memory
needs to be wrapped into an Atomically Reference Counted (Arc) pointer. This has
two disadvantages: all accesses to memory require generally slower heap access and
the evaluation suffers from the overhead accompanying atomic reference counting.

4
http://www.rtlola.org/

http://www.rtlola.org/


Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.
If any of these numbers exceeds a threshold, the specification raises an alarm.
Moreover, it keeps track of the number of open connections. A trigger indicates
when the the server attempts to close a connection even though none is open.
The full specification can be found in Listing 1.3. Figure 4b depicts the results

5
https://github.com/reactive-systems/Lola2RustArtifact

https://github.com/reactive-systems/Lola2RustArtifact
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input src, dst, length: Int32

input fin: Bool, push: Bool, syn: Bool

constant server: Int32 := ...

output count : Int32 := if count[-1,0] > 201 then 0 else count[-1,0] + 1

output receiver : Int32 := if dst=server then receiver[-2,0] + 2 else

if count > 200 then 0 else receiver[-1,0]

trigger receiver > 50 "Many incoming connections."

output received : Int32 := if dst=server ∧ push then 0 else length

output workload : Int32 := if count > 200 then workload[-1,0] + 1 else 0

trigger workload > 25 "Workload too high."

output opened : Int32 := opened[-1,0] + int(dst=server ∧ syn)

output closed : Int32 := closed[-1,0] + int(dst=server ∧ fin)

trigger opened - closed < 0 "Closed more connections than have been opened."

Listing 1.3: Lola specification for monitoring network traffic

input time_s, time_micros, velo_x, velo_y, velo_r_x, velo_r_y: Int32

output time := time_s + time_micros / 1000000

output count := count[-1,0] + 1

output frequency := 1 / (time - time[-1,0])

output freq_sum := frequency + freq_sum[-1,0]

output freq_avg := freq_sum / count

output velo : Int32 := vel_x*vel_x + vel_y*vel_y

output velo_max : Int32 := if res_max[-1,false] then velo

else max(velo_max[-1,0], velo)

output velo_min : Int32 := if res_max[-1,false] then velo

else min(velo_min[-1,0], velo)

output res_max: Bool := (velo_max - velo_min) > 1

output unchanged: Int32 := if res_max[-1,false] then 0 else unchanged[-1,0] + 1

output velo_dev : Int32 := velo_r_x - velo_x + velo_r_y - velo_y

output worst_dev: Int32 := if unchanged > 15 then velo_dev else max(velo_dev,

worst_dev[-1,-10])

trigger freq_avg < 10 "Low input frequency."

trigger velo_dev > 10 "Deviation between velocities too high."

trigger worst_dev > 20 "Worst velocity deviation too high."

Listing 1.4: Lola specification for flight phase detection

both in terms of running time and memory consumption for 20 runs. Again,
the y-axis represents both running time in seconds and memory consumption in
megabytes. The increase in resource consumption clearly reflects the increase in
complexity and size of the input specification. While the longest run took nearly
90min, most of the runs took less than 25min with a median of roughly 15min.
Like before, the memory consumption is relatively stable ranging around 3GB.

Lastly, we considered a Lola specifications that shows the limitations of our
approach. It detects different flight phases of a drone and raises an alarm if actual
velocity and a reference velocity provided by the flight controller deviate strongly.
The specification is based on a Lola specification for flight phase detection shown
in Listing 1.4.

After a successful compilation, the verification was able to reveal potential
arithmetic errors in the original specification [1]. The errors arose from division
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in which the denominator was an input stream access. The resulting value is not
necessarily non-zero, so Viper reported that the respective annotation cannot
be verified. Hence, our approach is able to detect flaws in specifications stem-
ming from implicit assumptions on the system. These assumptions may not hold
during runtime, causing the monitor to fail.

Thus, we modified the flight phase detection specification to work without
division. Yet, only four of our runs terminated successfully. The running time
varies between 6 and 16min and the memory consumption between 1.38GB and
1.66GB. The successful runs show that our approach is able to verify monitor
realizations of large and arithmetically challenging Lola specifications. However,
two runs did not terminate within three hours. The reason lies within the under-
lying smt solver: an unfavorable path choice in the solving procedure can result
in extended running times. Additionally, for four runs, the verification reported
that some assertions might not hold or crashed internally. While restarting the
verification procedure can lead to finding a successful run, the incident shows
the reliance of our approach on external tools. Hence, the applicability increases
with advances in research on automated proof checking of annotated code. This
constitutes another reason for the continued development of valuable tools like
Prusti and the Viper framework.

6.1 Performance of Generated Monitors

As expected, the compiled monitors exhibit superior running time when com-
pared against the RTLola [13] interpreter. The comparison is based on randomly
generated input data for the Altimeter6 and Network Traffic Monitor. For the
first specification, the interpreter required 438ns per event on average out of
10 runs, whereas the compiled version took 6.2ns. The second, more involved
specification shows similar results: 1, 535µs for the interpreter and 63.4ns for the
compiled version.

7 Related Work

The development of a verifying compiler was identified by Tony Hoare as a
grand challenge for computing research [18]. Milestone results have been the
concept of proof-carrying code (pcc) [23] and the technique of checking the result
of each compilation instead of verifying the compiler’s source code [24]. pcc
architectures [9] and certifying compilers [10] exist for general purpose languages
like Java. A variation of the pcc, abstraction-carrying code [7,17] was developed
for constraint logic programs, where a fixpoint of an abstract interpretation
serves as certificate for invariants. This enables automatic proof generation.

In this paper, we present a verifying compiler for the stream-based monitoring
language Lola. Compared to general programming languages, the compilation of

6 The specification was adapted to be compliant with RTLola: rather than accessing
the input with a future offset, the specification used a negative offset of -2.
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monitoring languages is still a young research topic. Some work has focused
on compiling specifications immediately into executable code. Rmor [16], for
instance, generates constant memory C code.

Similarly, a Copilot [26] specification can be compiled into a constant mem-
ory and constant time C realization. The Copilot toolchain [27] enables the
verification of the monitor using the cbmc model checker [8]. As opposed to
our approach, their verification is limited to the absence of various arithmetic
errors, lacking functional correctness. While cbmc can verify arbitrary inline as-
sertions, Copilot does not generate them. Note that, in contrast to Lola, Copilot
can express real-time properties.

RTLola [14, 32], on the other hand, is a real-time, asynchronous extension
of Lola, for which a compilation into the hardware description language vhdl

exists [6]. The vhdl code contains traceability annotations [4] and can then be
realized on an fpga. Similarly, Pellizzoni et al. [25] and Schumann et al. [20,31]
realize their runtime monitors on fpgas, yet without verification or traceability.

Rather than using a dedicated specification language, there are several log-
ics for which verified compilers exist. Differential dynamic logic [28], for ex-
ample, was specifically designed to capture the complex hybrid dynamics of
cyber-physical systems. The ModelPlex [19] framework translates such a speci-
fication into several verified components monitoring both the environment with
respect to the assumed model and the controller decisions. Lastly, there is work
on verifying monitors for metric first-order temporal [30] and dynamic logic [3].

8 Conclusion

We have presented a compilation of Lola specifications into Rust code. Using
Rust as the compilation target has the advantage that the executables are highly
performant and can be used directly on many embedded platforms. The gener-
ated code contains annotations that enable the verification of the code using the
Viper framework. With the guiding assertions in the code, as well as function
contracts and loop invariants, Viper can verify monitors even for large specifi-
cations.

Our results are promising and encourage further research in this direction,
such as compiling more expressive dialects of Lola such as RTLola [14, 32].
RTLola extends Lola with real-time aspects and can handle asynchronous in-
puts. The added functionality is highly relevant in the design of monitors for
cyber-physical systems [5, 13]. While generating verifiable RTLola monitors in
Rust will require additional effort, such an extension would further improve the
practical applicability of our approach.
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