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Abstract. MRI scans appearance significantly depends on scanning pro-
tocols and, consequently, the data-collection institution. These variations
between clinical sites result in dramatic drops of CNN segmentation
quality on unseen domains. Many of the recently proposed MRI domain
adaptation methods operate with the last CNN layers to suppress do-
main shift. At the same time, the core manifestation of MRI variability is
a considerable diversity of image intensities. We hypothesize that these
differences can be eliminated by modifying the first layers rather than
the last ones. To validate this simple idea, we conducted a set of experi-
ments with brain MRI scans from six domains. Our results demonstrate
that 1) domain-shift may deteriorate the quality even for a simple brain
extraction segmentation task (surface Dice Score drops from 0.85-0.89
even to 0.09); 2) fine-tuning of the first layers significantly outperforms
fine-tuning of the last layers in almost all supervised domain adaptation
setups. Moreover, fine-tuning of the first layers is a better strategy than
fine-tuning of the whole network, if the amount of annotated data from
the new domain is strictly limited.

Keywords: domain adaptation, segmentation, CNN, MRI

1 Introduction

Convolutional Neural Networks (CNN) are the most accurate segmentation meth-
ods for many medical image analysis tasks . The core advantage of deep CNN5s
is their great flexibility due to a large number of trainable parameters. However,
this flexibility may result in a dramatic drop in performance, if the test data
comes from a different distribution which is a common situation for medical
imaging. This fact is especially true for Magnetic Resonance Imaging (MRI) as
different scanning protocols result in significant variations of slice orientation,
thicknesses, and, most importantly, overall image intensities .

Many of the existing MRI domain adaptation approaches rely on the infor-
mation from the last CNN’s layers, see details in Sec. [2| However, we assume
that the differences in intensities can be successfully reduced by modifying the
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first convolutional layers. Surprisingly, this simple idea has not been directly
compared with other fine-tuning strategies to the best of our knowledge. There-
fore, we aimed to compare the following options in a series of supervised domain
adaptation setups: fine-tuning the whole network, fine-tuning the first layers only
and fine-tuning the last layers only.

Our contribution is twofold:

e First, we show that publicly available dataset CC359 [19] holds a great po-
tential for being utilised as a benchmark dataset for testing various DA
approaches.

e Secondly, we prove that fine-tuning of the first layers outperforms signifi-
cantly fine-tuning of the last layers. Moreover, fine-tuning of the first lay-
ers outperforms fine-tuning of the whole network when an extremely small
amount of data is available.

Finally, we publish a complete experimental pipeline to provide a starting
point for other researchersﬂ

2 Related work

A lot of domain adaptation methods exploit one of the following strategies:

1. Train a network on the source domain, then fine-tune it using data from the
target domain [7}[{12}20,/21].

2. Remove domain-specific information using an additional network head that
aims to predict the scan domain. The core idea introduced in [6] is to min-
imize domain prediction accuracy rather than maximize by exploiting the
gradient reversal layer (GRL). Related ideas were proposed in the medical
image analysis community by [10}/16].

3. Various ideas around Generative Adversarial Learning, e.g., [41[22].

Interestingly, at least some methods from all three groups exploit information
from the first/last layers explicitly or implicitly and thus are connected to the
core research question of our work.

The most widespread strategy is to fine-tune the last layers of the network.
Though it’s a natural solution for transfer learning as the generality of fea-
tures tends to decrease with the number of the layer |23], several works showed
promising results for domain adaptation [7}/12}/21]. In contrast, to the best of our
knowledge, fine-tuning of the first layers was not properly researched for medical
imaging. Moreover, the authors of [7}[12] directly rejected the idea of fine-tuning
the first layers because of an assumption that they pose too general, domain-
independent characteristics. GRL-related algorithms usually minimize domain
shift by analyzing high-level features generated at the end of the network using
similar motivation.

* https://github.com /kechua/DART20
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In the studies [5,/13], dedicated to out-of-distribution detection (OOD), the
best performance was achieved with the confidence scores computed for the in-
termediate or the last layers, but in those experiments out-of-distribution and in-
distribution data came from the datasets of a very different nature (e.g. CIFAR-
10 and SVHN), whereas in our case an "OOD sample” would correspond to a
scan from a new domain.

Meanwhile, a study [1] of non-medical images showed that domain shift effects
pop up at the very first layer. The authors train the net on the base domain and
then assess domain shift by observing filter maps, produced by convolutions
on a particular layer. The more pronounced domain shift on a certain layer is,
the more domain-specific are the distributions of the filter maps on this layer.
Concluding, that the first layers are susceptible to domain shift even more than
the other layers, the authors then develop an unsupervised DA method, targeting
the first layer only.

An idea somewhat similar to fine-tuning of the first layers was proposed in [11]
for the setup of test-time domain adaptation. The key element of the pipeline,
which is fine-tuned during the test time, is a shallow image-to-normalized-image
CNN, which may be thought of as the first layers of a net, combined from the
preprocessing and the main task nets.

Finally, the authors of [4] hypothesized that cross-modality (MRI-CT) do-
main shift causes significant changes mainly in the first layers, and developed
an unsupervised domain adaptation framework based on adversarial learning.
However, this idea wasn’t validated directly in the paper.

3 Experiments

3.1 Data

We conduct all the experiments on a publicly available dataset CC359 [19]. It is
composed of 359 MRIs of head acquired on scanners from three vendors (Siemens,
Philips and General Electric) at both 1.5T and 3T Different combinations of a
vendor and a field strength correspond to siz domains. Data is equally distributed
across domains, with an exception of Philips 1.57 domain, where only 59 subjects
are present.

We do not apply any specific preprocessing to the data, except for two simple
steps. First, we transform all the scans to the equal voxel resolution of 1 x 1 x 1
mm via interpolation of the slices. Secondly, we scale the resulting images to the
intensities of voxels between 0 and 1 before passing them to the network.

3.2 Metric
The quality of brain segmentation is usually measured with Dice Score [2].

2-|AN B|

Dice Score = ————.
|A| +|B|

(1)
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It measures a voxel-wise similarity between two masks A and B:, which means
that it captures volumetric quality of segmentation. However, in case of brain
segmentation the most eloquent indicator of the model quality is how good
the edges of the brain are segmented. Meanwhile, the edge zones account for a
small share of the brain volume, which makes dice score not sensitive enough
to the delineation quality. Therefore we use the Surface Dice metric [15], which
compares how closely the segmentation and the ground truth surfaces align.

Surface Dice shares the same formula with Dice Score (Eq. , but A and B
correspond to two surfaces in this case. The intersection of two surfaces depends
on the tolerance value, which defines the maximum distance between predicted
surface voxel and the ground truth surface voxel to be considered as matching
elements. We report the experimental results with the tolerance of 1mm, since
we find it sensitive enough to the changes in predictions of different methods.

3.3 Architecture and Training

Unlike 3D CNN architectures, 2D architectures give us an opportunity to inves-
tigate the behaviour of different approaches on an extremely small amount of
labeled data from the target domain, i.e. on a subset of slices from one scan (see
chapter[3.4), thus we use 2D U-Net [17] in all our experiments. Besides, we have
also conducted the baseline experiments for 3D U-Net [3] and observed equally
pronounced decline in the segmentation quality.

U-Net [17] is one of the most widely used architectures which was originally
developed for 2D image segmentation tasks. We adopt the original 2D U-Net
model for our task introducing minor changes to keep up with the state-of-the-
art level of architectures. We use residual blocks [8] instead of simple convolu-
tions, for this was shown to improve segmentation quality |[14]. We also apply
convolutional layer with 1 x 1 x 1 kernel to the skip-connections. We change the
channel-wise concatenation at the end of the skip-connections to the channel-
wise summation — it reduces memory consumption and preserves the number of
channels in the following residual blocks. Our architecture is detailed in Fig.
We keep it without changes for the rest of the experiments. To reduce the de-
pendence of the results on the architecture we also carried out the experiments
for vanilla U-Net.

On the source domain, we train the model for 100 epochs, starting with the
learning rate of 10~2 and reducing it to 10~2 at the epoch 80. When we transfer
the model to the other domain we fine-tune it for 20 epochs, starting with the
learning rate of 1072 and reducing it to 10~* at the epoch 15. Each epoch consists
of 100 iterations of stochastic gradient descent with Nesterov momentum (0.9).
At every iteration we sample a random slice and crop it randomly to the size
of 256 x 256. Then we form a mini-batch of size 32 and pass it to the network.
Training for 100 epochs takes about 4 hours on a 16GB nVidia Tesla V100 GPU.
These are the GPUs installed on the Zhores supercomputer recently launched in
Skolkovo Institute of Science and Technology (Skoltech) [24].
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Fig. 1: The architecture of 2D U-Net [17] with minor modification we use in
our work. In the scenarios implying freezing, either the first 3 or the last 3
convolutional layers are unfreezed. These layers contain an equal amount of filters
(16) of the same size, which means that in both scenarios an equal number of
parameters is fine-tuned.

3.4 Experimental setup

Below we detail three main groups of the experiments we have carried out. By
the term scan we always refer to the whole 3D MRI study, while slice is a 2D
section of a scan.

The baseline and the oracle. First of all, we have to determine whether
CC359 holds a potential for being useful for DA experiments. Thus we measure
cross-domain model transferability on this data set. To do so, we train separately
six models within the corresponding domains, and then test each model on the
other domains. This forms the baseline of our study.

The test score of a model on the source domain is obtained via 3-fold cross
validation. We refer to the result as oracle. It marks the upper boundary for
all transferring methods; note, though, that in some cases transferring methods
may outperform the oracle.

In the subsequent transferring experiments the models being transferred are
trained on the whole source domain. We calculate the fraction of the gap between
the oracle and the baseline that the method closes, because we find this way of
measuring a method performance the most interpretable (discussed in detail in
Sec. .

Supervised DA. In the main part of our study we consider three supervised
domain adaptation strategies: fine-tuning of the whole model (all layers), fine-
tuning of the first layers and fine-tuning of the last layers.
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Our goal is to investigate the performance of different methods under various
conditions of data availability, up to extreme shortage of target domain data.
Preliminary experiments shows that quality starts to deteriorate if less than
5 scans are provided, which aligns perfectly with the study [21], where it is
shown that segmentation performance decreases with the number of voxels in
the ground truth mask. In case of our task, operating with a 2D network allows
us to work with a subset of slices from a random scan instead of choosing a
smaller ground truth mask, which is not an option.

We vary the amount of data available, starting from 3 and 1 additional MRI
scans and then, making use of our choice of architecture, subsampling 1/2, 1/3,
1/6,1/12,1/24, 1/36 or 1/48 axial slices from 1 scan. In the latter scenarios we
sample slices evenly with the constant step, e.g. in 1/3 scenario we choose slices
0, 3, 6 and so on.

Discussion of the additional setups. Despite the authors of [9] suggest
focusing on the pipeline rather than the peculiarities of an architecture, we
support our claim with the same line of experiments with vanilla U-Net archi-
tecture [17]. Moreover, extremely limited amounts of data available raise the
question of augmentation, thus we repeat all the experiments for both archi-
tectures, introducing simple augmentation techniques: rotations and symmetric
flips. We place all the results for vanilla U-Net and the results for the original net
trained with augmentation in Supplementary Materials while discussing them in

Sec. [

In our preliminary experiments we also tried other supervised DA setups.
First, instead of fine-tuning, we trained the model from scratch on joint data
from the source and the target domains. Secondly, we trained the model from
scratch on data from the target domain only. We do not include aforementioned
strategies in the further analysis for they yield extremely poor results.

Table 1: Cross-domain model transfer without fine-tuning. Column names are
the source domains which the model is trained on, the row name is the target
domains which the model is tested on. Sm, GE, Ph correspond to vendors,
i.e. Siemens, GE and Philips. Results are given in surface Dice Score and the
corresponding standard deviations are placed in the brackets.

Sm, 1.5T Sm, 3T GE, 1.5T GE,3T Ph, 1.5T Ph, 3T

Sm, 1.5T .85 (.12) .51 (.15) .72 (.08) .56 (.13) .71 (.10) .71 (.07)
Sm, 3T .72 (.08) .88 (.03) .70 (.07) .67 (.10) .63 (.10) .66 (.06)
.09 (.05) .87 (.05) .30 (.10) .55 (.19) .48 (.08)
(.06)

08)

GE, 1.5T .39 (.14)

GE,3T .80 (.05) .63 (.13) .66 (.10) .89 (.03) .67 (.10) .67 (.
Ph, 1.5T .63 (.08) .25 (.07) .87 (.03) .43 (.06) .89 (.03) .46 (.
Ph,3T .54 (.13) .34 (13) .70 (.11) .37 (.10) .47 (.14) .86 (.04)
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4 Results and Discussion

We show the presence of domain shift problem in Tab. [1} Evaluating 2D U-Net
model on the source domain via cross-validation yields high Surface Dice values
(diagonal elements or the oracle). Transferring the model without fine-tuning
(non-diagonal elements or the baseline) leads to considerable quality deteriora-
tion. We emphasize the best scores with bold font and the worst with italics.

To assess each DA method for a particular source-target pair we calculate
the share of the gap between the oracle and the baseline this method closes. We
denote this share D and define it the following way:

Dy — D —Dp  Altransferring) @)
" Do-Dp A(oracle)

where Do is the oracle Surface Dice score on the target domain, Dp is
the baseline score on the target domain and D is the score of a method being
considered.

Below we compare three chosen approaches to supervised DA problem: fine-
tuning of the whole model (all layers), fine-tuning of the first layers and fine-
tuning of the last layers.

We consider the dependence of the relative improvement score on the amount
of target training data. We average the scores across 30 possible pairs of source-
target domains, excluding the same-domain inference and depict the trend in
Fig. [} We also depict the density distributions of the scores.

In Fig. [ we report the number of the source-target pairs on which a selected
method outperforms all the other methods (sums up to 30 over all methods for
each set-up). We use paired sign test for every source-target pair to calculate the
significance level. The instances for the sign test are the relative improvements
of the Surface Dice scores different DA approaches yield for every single test
image of the target domain.

Contrary to a mainstream conception, we show that fine-tuning of the first
layers outperforms considerably fine-tuning of the last layers in our task. We
therefore argue, that low-level features corresponding to the image intensity
profile could be re-learned more efficiently than high-level features, which corre-
spond to different brain structures and distinctive shapes.

Aside from freezing strategies comparison, we may see that under scarce data
condition fine-tuning of the first layers becomes superior to fine-tuning of the
whole model. It makes the former approach preferable in a highly practical setup,
corresponding to the lack of annotated data in the target domain.

Substituting U-Net with residual blocks with vanilla U-Net or adding aug-
mentation to either of them does not change the trends described. The results
for those setups may be found in Supplementary materials.
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Fig.2: Dependence of the relative Surface Dice improvement (y-axis) on the
target domain data availability (x-axis) for the three transferring strategies. The
lines correspond to the average scores. We also include distribution densities on
30 source-target domain pairs for every strategy.
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Fig. 3: Dependence of the best domain adaptation strategy on the target domain
data availability. Each bar counts the number of target domains which the cor-
responding method outperforms on. The shadowed parts of the bars correspond
to the cases, when the approach outperforms the others by the average score but
below the statistical significance level (p-value of paired Sign Test < 0.1).
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5 Conclusion

We show a drastic reduction in segmentation quality for a naive model trans-
fer between the domains of C'C359. We hypothesize that the low-level feature
maps of this data set are more prone to domain shift than the feature maps of
deeper layers; hence the first layers are the primary source of the performance
degradation.

We show that to be true by comparing different approaches to fine-tuning the
network: fine-tuning the first layers outperforms fine-tuning the last layers. We
also find that under the lack of annotated data for the target domain, fine-tuning
of the first layers is superior to fine-tuning of the whole network.

Though we investigate a simple supervised setup, our results may suggest
that unsupervised approaches will also benefit from targeting the first layers
rather than the last ones.

References

1. Aljundi, R., Tuytelaars, T.: Lightweight unsupervised domain adaptation by con-
volutional filter reconstruction. In: European Conference on Computer Vision. pp.
508-515. Springer (2016)

2. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara,
R.T., Berger, C., Ha, S.M., Rozycki, M., et al.: Identifying the best machine learn-
ing algorithms for brain tumor segmentation, progression assessment, and overall
survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

3. Cigek, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net:
learning dense volumetric segmentation from sparse annotation. In: International
conference on medical image computing and computer-assisted intervention. pp.
424-432. Springer (2016)

4. Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.A.: Unsupervised cross-modality
domain adaptation of convnets for biomedical image segmentations with adversar-
ial loss. In: IJCAI (2018)

5. Erdil, E., Chaitanya, K., Konukoglu, E.: Unsupervised out-of-distribution detection
using kernel density estimation (2020)

6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: International conference on machine learning. pp. 1180-1189 (2015)

7. Ghafoorian, M., Mehrtash, A., Kapur, T., Karssemeijer, N., Marchiori, E., Pesteie,
M., Guttmann, C.R., de Leeuw, F.E., Tempany, C.M., Van Ginneken, B., et al.:
Transfer learning for domain adaptation in mri: Application in brain lesion seg-
mentation. In: International conference on medical image computing and computer-
assisted intervention. pp. 516-524. Springer (2017)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

9. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-
net. In: International MICCAI Brainlesion Workshop. pp. 234-244. Springer (2018)

10. Kamnitsas, K., Baumgartner, C., Ledig, C., Newcombe, V., Simpson, J., Kane, A.,
Menon, D., Nori, A., Criminisi, A., Rueckert, D., et al.: Unsupervised domain adap-
tation in brain lesion segmentation with adversarial networks. In: International



10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

B. Shirokikh, I. Zakazov et al

conference on information processing in medical imaging. pp. 597-609. Springer
(2017)

Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural
networks for robust medical image segmentation (2020)

Kushibar, K., Valverde, S., Gonzélez-Villa, S., Bernal, J., Cabezas, M., Oliver, A.,
Lladé, X.: Supervised domain adaptation for automatic sub-cortical brain structure
segmentation with minimal user interaction. Scientific reports 9(1), 1-15 (2019)
Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-
of-distribution samples and adversarial attacks (2018)

Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 fourth international confer-
ence on 3D vision (3DV). pp. 565-571. IEEE (2016)

Nikolov, S., Blackwell, S., Mendes, R., De Fauw, J., Meyer, C., Hughes, C., Askham,
H., Romera-Paredes, B., Karthikesalingam, A., Chu, C., et al.: Deep learning to
achieve clinically applicable segmentation of head and neck anatomy for radiother-
apy. arXiv preprint arXiv:1809.04430 (2018)

Orbes-Arteaga, M., Varsavsky, T., Sudre, C.H., Eaton-Rosen, Z., Haddow, L.J.,
Sorensen, L., Nielsen, M., Pai, A., Ourselin, S., Modat, M., et al.: Multi-domain
adaptation in brain mri through paired consistency and adversarial learning. In:
Domain Adaptation and Representation Transfer and Medical Image Learning with
Less Labels and Imperfect Data, pp. 54-62. Springer (2019)

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234-241. Springer (2015)

Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annual
review of biomedical engineering 19, 221-248 (2017)

Souza, R., Lucena, O., Garrafa, J., Gobbi, D., Saluzzi, M., Appenzeller, S., Rit-
tner, L., Frayne, R., Lotufo, R.: An open, multi-vendor, multi-field-strength brain
mr dataset and analysis of publicly available skull stripping methods agreement.
Neurolmage 170, 482-494 (2018)

Valindria, V.V., Lavdas, 1., Bai, W., Kamnitsas, K., Aboagye, E.O., Rockall, A.G.,
Rueckert, D., Glocker, B.: Domain adaptation for mri organ segmentation using
reverse classification accuracy. arXiv preprint arXiv:1806.00363 (2018)

Valverde, S., Salem, M., Cabezas, M., Pareto, D., Vilanova, J.C., Ramidé-Torrenta,
L., Rovira, A., Salvi, J., Oliver, A., Lladé, X.: One-shot domain adaptation in
multiple sclerosis lesion segmentation using convolutional neural networks. Neu-
rolmage: Clinical 21, 101638 (2019)

Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M., Duncan, J.S.: Unsuper-
vised domain adaptation via disentangled representations: Application to cross-
modality liver segmentation. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. pp. 255-263. Springer (2019)
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in neural information processing systems. pp.
3320-3328 (2014)

Zacharov, I., Arslanov, R., Gunin, M., Stefonishin, D., Pavlov, S., Panarin, O., Mal-
iutin, A., Rykovanov, S., Fedorov, M.: "Zhores’ — petaflops supercomputer for data-
driven modeling, machine learning and artificial intelligence installed in skolkovo
institute of science and technology (2019)



First U-Net Layers Are Domain Specific 11

Supplementary Materials

In this section we present the results of the additional experiments we have
carried out in order to substantiate the claims of the paper. They fall into two
categories:

e The same experiments as described in the paper conducted with Vanilla 2D
U-Net

e Experiments with either an original net or Vanilla U-Net conducted with
augmentation

1. Vanilla 2D U-Net Experiments
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below the statistical significance level (p-value of paired Sign Test < 0.1).
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2. Augmentation Experiments
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