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Abstract. Building robust deep learning-based models requires large
quantities of diverse training data. In this study, we investigate the use
of federated learning (FL) to build medical imaging classification mod-
els in a real-world collaborative setting. Seven clinical institutions from
across the world joined this FL effort to train a model for breast density
classification based on Breast Imaging, Reporting & Data System (BI-
RADS). We show that despite substantial differences among the datasets
from all sites (mammography system, class distribution, and data set
size) and without centralizing data, we can successfully train AI models
in federation. The results show that models trained using FL perform
6.3% on average better than their counterparts trained on an institute’s
local data alone. Furthermore, we show a 45.8% relative improvement in
the models’ generalizability when evaluated on the other participating
sites’ testing data.

Keywords: federated learning, breast density classification, BI-RADS,
mammography

1 Introduction

Advancements in medical image analysis over the last several years have been
dominated by deep learning (DL) approaches. However, it is well known that DL
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requires large quantities of data to train robust and clinically useful models [6,5].
Often, hospitals and other medical institutes need to collaborate and host cen-
tralized databases for the development of clinically useful models. This overhead
can quickly become a logistical challenge and usually requires a time-consuming
approval process due to data privacy and ethical concerns associated with data
sharing in healthcare [12]. Even when these challenges can be addressed, data
is valuable, and institutions may prefer not to share full datasets. Furthermore,
medical data can be large, and it may be prohibitively expensive to acquire stor-
age for central hosting [4]. One approach to combat the data sharing hurdles
is federated learning (FL) [16], where only model weights are shared between
participating institutions without sharing the raw data.

To investigate the performance of FL in the real world, we conducted a study
to develop a breast density classification model using mammography data. An
international group of hospitals and medical imaging centers joined this col-
laborative effort to train the model in purely data-decentralized fashion without
needing to share any data. This is in contrast to previous studies in which the FL
environment was only simulated [21,14]. We do not have centralized training ex-
periments as references before starting the FL tasks, which places higher require-
ments on the robustness of the algorithms and selection of hyper-parameters.

1.1 Related Works

Breast density scoring: The classification of breast density is quintessential
for breast imaging to estimate the extent of fibroglandular tissue related to the
patient’s risk of developing breast cancer [2,19]. Women with a high mammo-
graphic breast density (>75%) have a four- to five-fold increase in risk for breast
cancer compared to women having a lower breast density [3,26]. This condition
affects roughly half of American women between the ages of 40 to 74 [7,25]. Pa-
tients identified with dense breast tissue may have masked tumors and benefit
from supplemental imaging such as MRI or ultrasound [13]. High mammographic
breast density impairs the sensitivity and specificity of breast cancer screening,
possibly because (small) malignant lesions are not detectable even when they are
present [17]. The standard evaluation metric for reporting breast density is the
Breast Imaging Reporting and Data System (BI-RADS), based on 2D mammog-
raphy [22]. Scans are categorized into one of four classes: (a) fatty, (b) scattered,
(c) heterogeneously dense, and (d) extremely dense.

Due to the subjective nature of the BI-RADS criteria, there can be substan-
tial inter-rater variability between pairs of clinicians. Sprague et al. [24] found
that the likelihood of a mammogram being read as dense varies from radiologist
to radiologist between 6.3% to 84.5%. Ooms et al. find that the overall agreement
between four observers (inter-rater agreement) in terms of the overall weighted
kappa was 0.77 [17]. Another study reported the inter-rater variability to be
simple kappa = 0.58 among 34 community radiologists [23]. Even the intra-rater
agreement in the assessment of BI-RADS breast density can be relatively low.
Spayne et al. [23] showed that the intra-rater agreement was below 80% when
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evaluating the same mammography exam within a 3- to 24-month period. Re-
cent work on applying DL for mammography breast density classification [13]
achieved a linear kappa of 0.67 when comparing the DL model’s predictions to
the assessments of the original interpreting radiologist.

Federated Learning: Federated learning has recently been described as being
instrumental for the future of digital health [20]. FL enables collaborative and
decentralized DL training without sharing any raw patient data [16]. Each client
in FL trains locally on their data and then submits their model parameters to
a server that accumulates and aggregates the model updates from each client.
Once a certain number of clients have submitted their updates, the aggregated
model parameters are redistributed to the clients, and a new round of local
training starts. While out of the scope of this work, FL can also be combined
with additional privacy-preserving measures to avoid potential reconstruction
of training data through model inversion if the model parameters would be
exposed to an adversary [14]. Recent works have shown the applicability of FL
to medical imaging tasks [21,14]. The security and privacy-preserving aspects
of federated machine learning in medical imaging have been discussed in more
detail by Kaissis et al. [9].

Fig. 1: Mammography data examples from different sites after resizing the origi-
nal images to a resolution of 224 × 224. No special normalization was applied in
order to keep the scanners’ original intensity distribution that can be observed
in 4.

2 Method

We implemented our FL approach in a real-world setting with participation from
seven international clients.

Datasets: The mammography data was retrospectively selected after Institu-
tional Review Board (IRB) approval as part of standard mammography screen-
ing protocols. The BI-RADS breast density class from the original interpreting
radiologist was collected from the reports available in the participating hospitals’
medical records and includes images from digital screening mammography (Fig.
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Fig. 2: Federated learning in medical imaging. The central server communicates
with clients from multi-national institutions without exchanging any sensitive
raw data. Still, the global model benefits from weights and gradients from clients’
local models to achieve higher overall performance.

1). Clients 1 to 3 utilized the multi-institutional dataset previously described in
[18], which was split by the digital mammography system used to acquire the
image to account for different dataset sources.

Each client’s data exhibited their own characteristics of detector type, image
resolution, and mammography type. Furthermore, the number of training images
varied significantly among clients, as shown in Table 1. The distributions of
the different BI-RADS categories were markedly different at some clients but
generally followed the distribution known from the literature, with more images
in the categories b and c [18], see Fig. 3. Given these differences that are quite
typical for real-world multi-institutional datasets, we can see that the data used
in this study is non-independent and identically distributed (non-IID).

Intensity distributions among different sites also varied markedly, as can be
observed in Fig. 4. This variance is due to the differences in imaging protocols and
digital mammography systems used at each data contributing site. No attempt
to consolidate these differences was made in our study to investigate the domain
shift challenges proposed by this non-IID data distribution.

Table 1: Dataset characteristics at each client. Image resolution is shown in
megapixels (MP).
Institution Image resolution Detector type Image type Bits # Train # Val. # Test

client1 23.04 Direct 2D 12 22933 3366 6534
client2 .02 to 4.39 Direct 2D 12 8365 1216 2568
client3 4.39 to 13.63 Direct 2D 14 44115 6336 12676
client4 4 to 28 Direct/Scintillator 2D 12 7219 1030 2069
client5 8.48 to 13.63 Direct 2D 12 6023 983 1822
client6 8.6 to 13.63 Direct 2D 12 6874 853 1727
client7 1 to 136 Direct/Scintillator 2D/tomosynthesis 10/12 4021 664 1288
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Fig. 3: Class distribution at different client sites as a fraction of their total data.
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Fig. 4: Intensity distribution at different sites.

Client-Server-Based Federated Learning: In its typical form, FL utilizes
a client-server setup (Fig. 2). Each client trains the same model architecture
locally on their data. Once a certain number of clients finishes a round of local
training, the updated model weights (or their gradients) are sent to the server for
aggregation. After aggregation, the new weights on the server are re-distributed
to the clients, and the next round of local model training begins. After a certain
number of FL rounds, the models at each client converge. Each client is allowed
to select their locally best model by monitoring a certain performance metric
on a local hold-out validation set. The client can select either the global model
returning from the server after averaging or any intermediate model considered
best during local training based on their validation metric. In our experiments,
we implement the FederatedAveraging algorithm proposed in [16]. While there
exist variations of this algorithm to address particular learning tasks, in its most
general form, FL tries to minimize a global loss function L which can be a
weighted combination of K local losses {Lk}Kk=1, each of which is computed on
a client k’s local data. Hence, FL can be formulated as the task of finding the
model parameters φ that minimize L given some local data Xk ∈ X, where X
would be the combination of all local datasets.

min
φ
L(X;φ) with L(X;φ) =

K∑
k=1

wk Lk(Xk;φ), (1)
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where wk > 0 denotes the weight coefficients for each client k, respectively.
Note that the local data Xk is never shared among the different clients. Only
the model weight differences are accumulated and aggregated on the server as
shown in Algorithm 1.

Algorithm 1 Client-server federated learning with
FederatedAveraging [16,14]. T is the number of federated learning rounds
and nk is the number of LocalTraining iterations minimizing the local loss
Lk(Xk;φ(t−1)) for a client k.

1: procedure Federated Learning

2: Initialize weights: φ(0)

3: for t← 1 · · ·T do
4: for client k ← 1 · · ·K do . Executed in parallel

5: Send φ(t−1) to client k

6: Receive (∆φ
(t)
k , nk) from client’s LocalTraining(φ(t−1))

7: end for
8: φ

(t)
k ← φ(t−1) +∆φ

(t)
k

9: φ(t) ← 1∑
k nk

∑
k (nk · φ(t)

k )

10: end for
11: return φ(t)

12: end procedure

In this work, we choose a softmax cross-entropy loss which is commonly used
for multi-class classification tasks: L0 = −

∑C
i=1 yi log (pi); with C = 4 being the

number of classes. Here, pi is the predicted probability for a class i from the final
softmax activated output layer of our neural network f(x) and y is the one-hot
encoded ground truth label for a given image.

Classification Model & Implementation: In this work, we do not focus on
developing a new model architecture but instead focus on showing how FL works
in a real-world collaborative training situation. We implement a DenseNet-121
[8] model as a backbone and append a fully-connected layer with four outputs
to its last feature layer to classify a mammography image as one of the four BI-
RADS categories. The FL framework is implemented in Tensorflow8 and utilizes
the NVIDIA Clara Train SDK9 to enable the communication between server and
clients as well as to standardize the training configuration among clients. Each
client employed an NVIDIA GPU with at least 12 GB memory.

All mammography images were normalized to an intensity range of [0 . . . 1]
and resampled to a resolution of 224 × 224. We include both left and right
breast images and all available views (craniocaudal and mediolateral oblique)
in training. Each client separated their dataset into training, validation, and
testing sets on the patient level (see Table 1). At inference time, predictions
from all images from a given patient were averaged together to give a patient-
level prediction.

8 https://www.tensorflow.org/
9 https://developer.nvidia.com/clara

https://www.tensorflow.org/
https://developer.nvidia.com/clara
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Each client trained for one epoch before sending their updated model weights
to the server for aggregation, and the server waited for all clients before perform-
ing a weighted sum of the clients’ weight differences. We used initial learning
rates of 1e-4 with step-based learning rate decay, Adam optimization for each
client, and model weight decay. A mini-batch of size 32 was sampled from the
dataset such that all categories were equally represented during training. Ran-
dom spatial flips, rotations between ± 45 degrees, and intensity shifts were used
as on-the-fly image augmentation to avoid overfitting to the training data. The
FL training was run for 300 rounds of local training and weight aggregations,
which took about 36 hours. After the FL training is finished, each client’s best
local model is shared with all other clients and tested on their test data to
evaluate the models’ generalizability.

In an additional experiment, we use the locally best models each client re-
ceives after FL to execute a second round of local fine-tuning based on this
model. This additional “adaptation” step can improve a client’s model on their
local data.

Evaluation Metric: We utilize Cohen’s linear weighed kappa10 to evaluate
the locally best models’ performance before and after federated learning in com-
parison with the radiologists’ ground truth assessments. The kappa score is a
number between -1 and 1. Scores above 0.8 are generally considered very good
agreement, while zero or lower would mean no agreement (practically random
assignment of labels). A kappa of 0.21 to 0.40, 0.41 to 0.60, and 0.61 to 0.80 rep-
resents fair, moderate, and substantial agreement, respectively [11]. The kappa
measure has been chosen to be directly comparable to previous literature on
breast density classification in mammography [13,17,23].

3 Results

In Table 2, we show the performance of locally best models (selected by best
validation score on local data) using local training data alone as well as after
federated learning. On average, a 6.3% relative improvement can be observed
when the model is applied to a client’s test data (diag. mean). We also observe a
general improvement of these best local models applied to the different clients’
test data. Here, the generalizability (off-diag. mean) of the models improved by
45.8% on average.

10 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

cohen_kappa_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
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Table 2: Performance of locally best models (selected by best validation score on local data)
using (a) local training data alone and (b) after federated learning.

(a) Local: Test (b) Federated: Test

T
r
a
in

client 1 2 3 4 5 6 7

T
r
a
in

client 1 2 3 4 5 6 7

1 0.62 0.59 0.44 0.02 0.02 -0.01 0.04 1 0.62 0.62 0.48 0.15 0.23 0.24 0.11
2 0.15 0.56 0.02 -0.01 -0.00 0.00 -0.01 2 0.22 0.65 0.11 0.04 0.00 0.00 -0.01
3 0.19 0.01 0.64 0.02 0.07 0.00 0.05 3 0.41 0.17 0.63 0.07 -0.00 0.01 -0.01
4 0.11 0.02 -0.00 0.63 0.52 0.61 0.50 4 0.06 0.48 -0.02 0.69 0.57 0.65 0.52
5 -0.00 -0.01 -0.03 0.54 0.62 0.65 0.31 5 0.24 0.13 0.02 0.64 0.62 0.69 0.52
6 0.01 0.11 -0.02 0.49 0.59 0.71 0.32 6 0.23 0.01 -0.00 0.53 0.68 0.76 0.31
7 0.03 0.05 -0.05 0.40 0.37 0.46 0.69 7 0.10 0.21 0.13 0.55 0.44 0.52 0.77

Global 0.51 0.52 0.49 0.31 0.4852 0.31 0.0893

diag. mean 0.64 diag. mean 0.68
off-diag. mean 0.18 off-diag. mean 0.26

Fig. 5 summarizes the kappa scores for local training, after FL, including after
local fine-tuning, which improves a given model’s performance on the client’s
local test data in all but one client.

0.55

0.60

0.65

0.70

0.75

0.80

0.85

client1 client2 client3 client4 client5 client6 client7

Local Federated Federated + fine-tune

Fig. 5: Weighted linear kappa performance before and after federated learning,
and after an additional round of local fine-tuning at each local site.

4 Discussion & Conclusions

Given our experimental results, we can see that federated learning (FL) in a
real-world scenario can both achieve more accurate models locally as well as
increase the generalizability of these models to data from other sources, such as
test data from other clients. This improvement is due to the effectively larger
training set made available through FL without the need to share any data di-
rectly. While we cannot directly compare to a centralized training setting due
to the nature of performing FL in a real-world setting, we observed that the
average performance of models is similar to values reported in the literature on
centralized datasets. For example, Lehman et al. [13] reported a linear kappa
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value of 0.67 when applying DL for mammography breast density classification.
We achieved an average performance of local models of 0.68 in the FL setting,
confirming the ability of FL to achieve models comparable to models trained
when the data is accumulated in a central database. However, while the general-
izability is improved, it is still not comparable to the performance on local test
sets. In particular, the final global model is not near any acceptable performance
on any of the local test datasets. The heterogeneity in results across institutions
illustrates the difficulties in training models that are generalizable. In practice,
some local adaptation (fine-tuning, see Fig. 5) or at least model selection based
on local validation data (see diagonal of Table 2) is needed.

In this work, we deliberately did not attempt any data harmonization meth-
ods to study the effect of different data domains. The marked differences in
intensity distributions due to different mammography systems are observable in
Fig. 4. Future work might explore the use of histogram equalization and other
techniques [10,1] to harmonize non-IID data across different sites or investi-
gate built-in strategies for domain adaptation within the FL framework [15].
Similarly, we did not fully address issues of data size heterogeneity and class
imbalance within our FL framework. For example, client 7 had almost no cate-
gory (b) samples due to their local labeling practices required by their clinical
protocol. Future work could incorporate training strategies such as client-specific
local training iterations, other mini-batch sampling strategies, and loss functions.
We also did not attempt privacy-preservation techniques that would reduce the
chance of model inversion and potential data leakage based on the trained mod-
els. Differential privacy could easily be applied to our framework, and it has been
shown that it can achieve comparable results to the vanilla FL setting [14].

Despite these challenges, we were able to train mammography models in a
real-world FL setting that improved the performance of locally trained models
alone, illustrating the promise of FL for building clinically-applicable models and
sidestepping the need for accumulating a centralized dataset.
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