Skip to main content

Attention-Guided Deep Domain Adaptation for Brain Dementia Identification with Multi-site Neuroimaging Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12444))

Abstract

Deep learning has demonstrated its superiority in automated identification of brain dementia based on neuroimaging data, such as structural MRIs. Previous methods typically assume that multi-site data are sampled from the same distribution. Such an assumption may not hold in practice due to the data heterogeneity caused by different scanning parameters and subject populations in multiple imaging sites. Even though several deep domain adaptation methods have been proposed to mitigate data heterogeneity between sites, they usually require a portion of labeled target data for model training, and rarely consider the potentially different contributions of different brain regions to disease prognosis. To address these limitations, we propose an attention-guided deep domain adaptation (AD\(^2\)A) framework for brain dementia prognosis, which does not need label information of the target domain and can automatically identify discriminative locations in whole-brain MR images. The proposed AD\(^2\)A framework consists of three key components: 1) a feature encoding module for representation learning of input MR images, 2) an attention discovery module for automatically locating dementia-related discriminative regions in brain MRIs, and 3) a domain transfer module with adversarial learning for knowledge transfer between the source and target domains. Extensive experiments have been conducted on three benchmark neuroimaging datasets, with results suggesting the effectiveness of our method in both tasks of brain dementia identification and disease progression prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Falahati, F., Westman, E., Simmons, A.: Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging. J. Alzheimer’s Dis. 41(3), 685–708 (2014)

    Article  Google Scholar 

  2. Cuingnet, R., Gerardin, E., Tessieras, J., et al.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011)

    Article  Google Scholar 

  3. Liu, M., Zhang, D., Shen, D.: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans. Med. Imaging 35(6), 1463–1474 (2016)

    Article  Google Scholar 

  4. Lian, C., et al.: Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images. Med. Image Anal. 46, 106–117 (2018)

    Article  Google Scholar 

  5. Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 880–893 (2018)

    Article  Google Scholar 

  6. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  7. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  8. Wachinger, C., Reuter, M.: Domain adaptation for Alzheimer’s disease diagnostics. NeuroImage 139, 470–479 (2016)

    Article  Google Scholar 

  9. Rieke, J., Eitel, F., Weygandt, M., Haynes, J.-D., Ritter, K.: Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC -2018. LNCS, vol. 11038, pp. 24–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_3

    Chapter  Google Scholar 

  10. Hosseini-Asl, E., Keynton, R., El-Baz, A.: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network. In: ICIP, pp. 126–130 (2016)

    Google Scholar 

  11. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: Cbam: convolutional block attention module. In: ECCV, pp. 3–19 (2018)

    Google Scholar 

  12. Mu, Y., Gage, F.H.: Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegeneration 6(1), 85 (2011). https://doi.org/10.1186/1750-1326-6-85

    Article  Google Scholar 

  13. Ott, B.R., Cohen, R.A., Gongvatana, A., et al.: Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 20(2), 647–657 (2010)

    Article  Google Scholar 

  14. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

  15. Ganin, Y., Ustinova, E., Ajakan, H., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Jack Jr., C.R., Bernstein, M.A., Fox, N.C., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  17. Ellis, K.A., Bush, A.I., Darby, D., et al.: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21(4), 672–687 (2009)

    Article  Google Scholar 

  18. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Networks 22(2), 199–210 (2010)

    Article  Google Scholar 

  19. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: ICCV, pp. 2960–2967 (2013)

    Google Scholar 

  20. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, pp. 2066–2073 (2012)

    Google Scholar 

  21. D’Amelio, M., Puglisi-Allegra, S., Mercuri, N.: The role of dopaminergic midbrain in Alzheimer’s disease: translating basic science into clinical practice. Pharmacol. Res. 130, 414–419 (2018)

    Article  Google Scholar 

  22. De Marco, M., Venneri, A.: Volume and connectivity of the ventral tegmental area are linked to neurocognitive signatures of Alzheimer’s disease in humans. J. Alzheimers Dis. 63(1), 167–180 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinggang Shen or Mingxia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, H., Yang, E., Yap, PT., Shen, D., Liu, M. (2020). Attention-Guided Deep Domain Adaptation for Brain Dementia Identification with Multi-site Neuroimaging Data. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning. DART DCL 2020 2020. Lecture Notes in Computer Science(), vol 12444. Springer, Cham. https://doi.org/10.1007/978-3-030-60548-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60548-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60547-6

  • Online ISBN: 978-3-030-60548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics