Skip to main content

Underwater Enhancement Model via Reverse Dark Channel Prior

  • Conference paper
  • First Online:
  • 2524 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12305))

Abstract

The interference of suspended particles causes the problems of color distortion, haze effect and visibility reduction in complex underwater environment. However, existing methods for enhancement often result in overexposure of the low contrast area or distortion of the seriously turbid area. The main factor is the diversity of the underwater images. In this paper, we propose a novel underwater imaging model which can recover different kinds of underwater images, especially the image from the murky water. Specifically, we develop a reverse dark channel prior algorithm which can separate the image with large degradation by setting a maximum filter dark channel threshold. Using the algorithm, we can calculate the adaptive transmissivity and restore the blurred images. The restored image will be sent into an end-to-end generative model for coloring transformation and enhancement. Furthermore, we build an edge deepening module for edge recovery. Comprehensive experimental evaluations show that our method performs promising on image enhancement for different kinds of turbid water. Compared with other previous methods, our method is more universal and more suitable for practical applications.

This work was supported by the National Natural Science Foundation of China (No. 61971388, U1706218, 41576011, L1824025), Key Research and Development Program of Shandong Province (No. GG201703140154), and Major Program of Natural Science Foundation of Shandong Province (No. ZR2018ZB0852).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li, C., Anwar, S.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2019)

    Article  Google Scholar 

  2. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  3. Serikawa, S., Lu, H.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014)

    Article  Google Scholar 

  4. Aiping, Y., Chang, Q., Jian, W., Liyun, Z.: Underwater image visibility restoration based on underwater imaging model. J. Electron. Inf. Technol. 40, 298–305 (2018)

    Google Scholar 

  5. Drews, P.L.J., Nascimento, E.R., Botelho, S.S.C., Campos, M.F.M.: Underwater depth estimation and image restoration based on single images. IEEE Comput. Graph. Appl. 36(2), 24–35 (2016)

    Article  Google Scholar 

  6. Peng, Y.T., Cao, K., Cosman, P.C.: Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 27(6), 2856–2868 (2018)

    Article  MathSciNet  Google Scholar 

  7. Carlevaris-Bianco, N., Mohan, A., Eustice, R.M.: Initial results in underwater single image dehazing. In: OCEANS 2010 MTS/IEEE SEATTLE, pp. 1–8 (2010)

    Google Scholar 

  8. McCartney, E.: Scattering phenomena (book reviews: optics of the atmosphere scattering by molecules and particles). Science 196, 1084–1085 (1977)

    Google Scholar 

  9. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017)

    Google Scholar 

  10. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2868–2876 (2017)

    Google Scholar 

  11. Kim, T.: Learning to discover cross-domain relations with generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, PMLR, vol. 70, pp. 1857–1865 (2017)

    Google Scholar 

  12. Liu, T.Y.: Conditional image-to-image translation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5524–5532 (2018)

    Google Scholar 

  13. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Computer Vision and Pattern Recognition (CVPR), pp. 4681–4690 (2016)

    Google Scholar 

  14. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  15. Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 3(1), 387–394 (2017)

    Google Scholar 

  16. Sun, X., Shi, J., Liu, L., Dong, J., Plant, C., Wang, X., Zhou, H.: Transferring deep knowledge for object recognition in low-quality underwater videos. Neurocomputing 275, 897–908 (2017)

    Article  Google Scholar 

  17. Fabbri, C., Islam, M.J., Sattar, J.: Enhancing underwater imagery using generative adversarial networks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, 2018, pp. 7159–7165 (2018)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 9351, pp. 234–241 (2015)

    Google Scholar 

  19. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976, July 2017

    Google Scholar 

  20. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning (PMLR), vol. 70, pp. 214–223, January 2017

    Google Scholar 

  21. Wang, N., Zhou, Y., Han, F., Zhu, H., Zheng, Y.: UWGAN: underwater GAN for real-world underwater color restoration and dehazing. In: ICLR 2020 Conference Blind Submission (2020). https://openreview.net/forum?id=HkgMxkHtPH

  22. Sun, X., Liu, L., Li, Q., Dong, J., Lima, E., Yin, R.: Deep pixel-to-pixel network for underwater image enhancement and restoration. IET Image Process. 13(3), 469–474 (2019)

    Article  Google Scholar 

  23. Chen, Y., Lai, Y.K., Liu, Y.J.: CartoonGAN: generative adversarial networks for photo cartoonization. In: IEEE/CVF Conference on Computer Vision Pattern Recognition, pp. 9465–9474 (2018)

    Google Scholar 

  24. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Proceedings of the 12th European conference on Computer Vision - Volume Part V, pp. 746–760 (2012)

    Google Scholar 

  25. Uplavikar, P., Wu, Z., Wang, Z.: All-in-one underwater image enhancement using domain-adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1–8 (2019)

    Google Scholar 

  26. Galdran, A., Pardo, D., Picon, A., Alvarez-Gila, A.: Automatic red-channel underwater image restoration. J. Vis. Commun. Image Representation 26, 132–145 (2015)

    Article  Google Scholar 

  27. Li, C.Y., Guo, J.C., Cong, R.M., Pang, Y.W., Wang, B.: Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 25(12), 5664–5677 (2016)

    Article  MathSciNet  Google Scholar 

  28. Peng, Y.T., Cosman, P.C.: Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 26(4), 1579–1594 (2017)

    Article  MathSciNet  Google Scholar 

  29. Ancuti, C., Codruta, A., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 81–88, June 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Y., Zhao, H., Sun, X., Zhang, Y., Dong, J. (2020). Underwater Enhancement Model via Reverse Dark Channel Prior. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12305. Springer, Cham. https://doi.org/10.1007/978-3-030-60633-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60633-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60632-9

  • Online ISBN: 978-3-030-60633-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics