Skip to main content

Blind Super-Resolution with Kernel-Aware Feature Refinement

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12305))

Included in the following conference series:

  • 2565 Accesses

Abstract

Numerous learning-based super-resolution (SR) methods that assume the blur kernel is known in advance or hand-crafted perform excellently on the synthesized images. While these methods fail to produce satisfactory results when applied to real-world images. Therefore, several blind SR methods are proposed, where the blur kernel is unavailable. However, they only consider the Gaussian blur kernel, which is not enough for real-world images. To address this problem, we propose to synthesize training data with real blur kernels estimated from real sensor images. Further, we find that models trained with the data synthesized with the estimated real blur kernels still cannot perform well enough without awareness of the blur kernel. Thus, we first propose a new kernel predictor (KP) to predict the blur kernel from the input low-resolution image. Then we design the kernel-aware feature refinement (KAFR) module to utilize the predicted blur kernel to facilitate the restoration of the high-resolution image. Extensive experiments on synthesized and real-world images show that the proposed method achieves superior performance against the state-of-the-art (SOTA) methods both on effectiveness and efficiency.

Z. Wu—This is a student paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: CVPR Workshop (2017)

    Google Scholar 

  2. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. In: NeurIPS, pp. 284–293 (2019)

    Google Scholar 

  3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

    Google Scholar 

  4. Bulat, A., Yang, J., Tzimiropoulos, G.: To learn image super-resolution, use a GAN to learn how to do image degradation first. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 187–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_12

    Chapter  Google Scholar 

  5. Efrat, N., Glasner, D., Apartsin, A., Nadler, B., Levin, A.: Accurate blur models vs. image priors in single image super-resolution. In: ICCV (2013)

    Google Scholar 

  6. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: CVPR (2019)

    Google Scholar 

  7. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)

    Google Scholar 

  8. Huang, Y., Shao, L., Frangi, A.F.: Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding. In: CVPR (2017)

    Google Scholar 

  9. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: DSLR-quality photos on mobile devices with deep convolutional networks. In: ICCV (2017)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network (2017)

    Google Scholar 

  12. Martin, D., Fowlkes, C., Tal, D., Malik, J., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  13. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: CVPR (2016)

    Google Scholar 

  14. Pan, L., Hartley, R., Liu, M., Dai, Y.: Phase-only image based kernel estimation for single image blind deblurring. In: CVPR (2019)

    Google Scholar 

  15. Rasti, P., Uiboupin, T., Escalera, S., Anbarjafari, G.: Convolutional neural network super resolution for face recognition in surveillance monitoring. In: Perales, F.J.J., Kittler, J. (eds.) AMDO 2016. LNCS, vol. 9756, pp. 175–184. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41778-3_18

    Chapter  Google Scholar 

  16. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: ICCV (2017)

    Google Scholar 

  17. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)

    Google Scholar 

  18. Shocher, A., Cohen, N., Irani, M.: “Zero-shot” super-resolution using deep internal learning. In: CVPR (2018)

    Google Scholar 

  19. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: CVPR Workshop (2017)

    Google Scholar 

  20. Wang, X., Yu, K., Dong, C., Change Loy, C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: CVPR (2018)

    Google Scholar 

  21. Xu, X., Pan, J., Zhang, Y.J., Yang, M.H.: Motion blur kernel estimation via deep learning. IEEE TIP 27(1), 194–205 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Yuan, Y., Liu, S., Zhang, J., Zhang, Y., Dong, C., Lin, L.: Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: CVPR Workshop (2018)

    Google Scholar 

  23. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  24. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: CVPR (2018)

    Google Scholar 

  25. Zhang, Y., Liu, S., Dong, C., Zhang, X., Yuan, Y.: Multiple cycle-in-cycle generative adversarial networks for unsupervised image super-resolution. IEEE TIP 29, 1101–1112 (2019)

    MathSciNet  Google Scholar 

  26. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  27. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018)

    Google Scholar 

  28. Zhou, R., Susstrunk, S.: Kernel modeling super-resolution on real low-resolution images. In: ICCV (2019)

    Google Scholar 

  29. Zhou, T., Wang, S., Zhou, Y., Yao, Y., Li, J., Shao, L.: Motion-attentive transition for zero-shot video object segmentation. In: AAAI (2020)

    Google Scholar 

  30. Zhou, T., Wang, W., Qi, S., Ling, H., Shen, J.: Cascaded human-object interaction recognition. In: CVPR (2020)

    Google Scholar 

  31. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 61273273), by the National Key Research and Development Plan (No. 2017YFC0112001), and by China Central Television (JG2018-0247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Lu, Y., Li, G., Wang, S., Wang, X., Wang, Z. (2020). Blind Super-Resolution with Kernel-Aware Feature Refinement. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12305. Springer, Cham. https://doi.org/10.1007/978-3-030-60633-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60633-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60632-9

  • Online ISBN: 978-3-030-60633-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics