Skip to main content

Canonical Correlation Cross-Domain Alignment for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
  • 1177 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12307))

Abstract

Domain adaptation has been widely used in the field of computer vision. Current methods of domain adaptation mainly aim to reduce the difference of the marginal and conditional distributions of the source and target domains in a centralized manner. However, most of the existing domain adaptation methods ignore the correlation information of the two domains, or doesn’t take it very seriously. That making it difficult to learn related features from the source domain for the target task. A new method, canonical correlation cross-domain alignment (CCCA), is proposed to effectively reduce the cross-domain distribution difference by combining the least squares formula of CCA with domain adaptation. In CCCA, a common latent subspace with the maximum correlation is learned to ensure that the learned features are from the two domains with maximum correlation. A Laplace graph is learned to maintain the structural consistency of CCCA. To verify the performance of our method, we conduct experiments on several benchmark visual databases. The experimental results illustrate its superiority to several other methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised domain adaptation by domain invariant projection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 769–776 (2013)

    Google Scholar 

  2. Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 29 (2004)

    Google Scholar 

  3. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2960–2967 (2013)

    Google Scholar 

  4. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495 (2014)

  5. Geng, B., Tao, D., Xu, C.: DAML: domain adaptation metric learning. IEEE Trans. Image Process. 20(10), 2980–2989 (2011)

    Article  MathSciNet  Google Scholar 

  6. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066–2073. IEEE (2012)

    Google Scholar 

  7. Hou, C.A., Tsai, Y.H.H., Yeh, Y.R., Wang, Y.C.F.: Unsupervised domain adaptation with label and structural consistency. IEEE Trans. Image Process. 25(12), 5552–5562 (2016)

    Article  MathSciNet  Google Scholar 

  8. Li, J., Jing, M., Lu, K., Zhu, L., Shen, H.T.: Locality preserving joint transfer for domain adaptation. IEEE Trans. Image Process. 28(12), 6103–6115 (2019)

    Article  MathSciNet  Google Scholar 

  9. Li, M., Yuan, B.: 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recogn. Lett. 26(5), 527–532 (2005)

    Article  Google Scholar 

  10. Li, S., Song, S., Huang, G., Ding, Z., Wu, C.: Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Trans. Image Process. 27(9), 4260–4273 (2018)

    Article  MathSciNet  Google Scholar 

  11. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2200–2207 (2013)

    Google Scholar 

  12. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1417 (2014)

    Google Scholar 

  13. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2208–2217. JMLR.org (2017)

    Google Scholar 

  14. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20) (1996)

    Google Scholar 

  15. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2010)

    Article  Google Scholar 

  16. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  17. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  18. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation (2015)

    Google Scholar 

  19. Sun, L., Ji, S., Ye, J.: Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 194–200 (2010)

    Google Scholar 

  20. Wang, J., Chen, Y., Hao, S., Feng, W., Shen, Z.: Balanced distribution adaptation for transfer learning. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 1129–1134. IEEE (2017)

    Google Scholar 

  21. Wang, J., Chen, Y., Yu, H., Huang, M., Yang, Q.: Easy transfer learning by exploiting intra-domain structures. arXiv preprint arXiv:1904.01376 (2019)

  22. Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 402–410. ACM (2018)

    Google Scholar 

  23. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1859–1867 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, D., Wang, W., Lu, Y. (2020). Canonical Correlation Cross-Domain Alignment for Unsupervised Domain Adaptation. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12307. Springer, Cham. https://doi.org/10.1007/978-3-030-60636-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60636-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60635-0

  • Online ISBN: 978-3-030-60636-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics