Skip to main content

Assessing Action Quality via Attentive Spatio-Temporal Convolutional Networks

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12306))

Included in the following conference series:

Abstract

Action quality assessment, which aims at evaluating the performance of specific actions, has drawn more and more attention due to its extensive demand in sports, health care, etc. Unlike action recognition, in which a few typical frames are sufficient for classification, action quality assessment requires analysis at a fine temporal granularity to discover the subtle motion difference. In this paper, we propose a novel spatio-temporal framework for action quality assessment at full-frame-rate (25fps), which consists of two steps: i.e. spatio-temporal feature extraction and temporal feature fusion, respectively. In the first step, to generate representative spatio-temporal dynamics, we utilize a spatial convolutional network (SCN) together with specially designed temporal convolutional networks (TCNs) and train them by a two-stage strategy. In the second step, we introduce an attention mechanism to fuse features in the temporal dimension according to their impact on the overall performance. Compared with existing three dimensional convolutional neural networks (3D-CNN) based methods, our model is capable of capturing more action quality relevant details. As a by-product, our model can also attend to the highlight moments in sports videos, which gives a better interpretation of the score. Extensive experiments on three public benchmarks demonstrate that the proposed method has distinct advantage in action quality assessment and achieves improvement over the state-of-the-art.

This work was supported by the National Key Research and Development Plan of China (Grant No. 2016YFB1001002) and the Foundation for Innovative Research Groups through the National Natural Science Foundation of China (Grant No. 61421003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  3. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image networks for action recognition. In: CVPR, pp. 3034–3042 (2016)

    Google Scholar 

  4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  5. Chollet, F., et al.: Keras: the python deep learning library. Astrophysics Source Code Library (2018)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  7. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: Draw: a recurrent neural network for image generation. arXiv preprint arXiv:1502.04623 (2015)

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets, pp. 286–297. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-75988-8_28

    Chapter  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

    Google Scholar 

  13. Laptev, I.: On space-time interest points. Int. J. Comput. Vision 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  14. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  15. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: CVPR, pp. 3361–3368 (2011)

    Google Scholar 

  16. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: CVPR, pp. 1003–1012 (2017)

    Google Scholar 

  17. Li, Y., Chai, X., Chen, X.: End-to-end learning for action quality assessment. In: PCM, pp. 125–134 (2018)

    Google Scholar 

  18. Li, Y., Chai, X., Chen, X.: ScoringNet: learning key fragment for action quality assessment with ranking loss in skilled sports. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 149–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_10

    Chapter  Google Scholar 

  19. Park, D., Ramanan, D.: N-best maximal decoders for part models. In: ICCV, pp. 2627–2634 (2011)

    Google Scholar 

  20. Parmar, P., Morris, B.T.: Learning to score olympic events. In: CVPRW, pp. 76–84 (2017)

    Google Scholar 

  21. Pirsiavash, H., Vondrick, C., Torralba, A.: Assessing the quality of actions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 556–571. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_36

    Chapter  Google Scholar 

  22. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: ICCV, pp. 5534–5542 (2017)

    Google Scholar 

  23. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  24. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurIPS, pp. 568–576 (2014)

    Google Scholar 

  25. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  26. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  27. Venkataraman, V., Vlachos, I., Turaga, P.K.: Dynamical regularity for action analysis. In: BMVC, pp. 67–1 (2015)

    Google Scholar 

  28. Wang, J., Du, Z., Li, A., Wang, Y.: Atrous temporal convolutional network for video action segmentation. In: ICIP, pp. 1585–1589 (2019)

    Google Scholar 

  29. Xiang, X., Tian, Y., Reiter, A., Hager, G.D., Tran, T.D.: S3D: stacking segmental P3D for action quality assessment. In: ICIP, pp. 928–932 (2018)

    Google Scholar 

  30. Xu, B., Ye, H., Zheng, Y., Wang, H., Luwang, T., Jiang, Y.G.: Dense dilated network for few shot action recognition. In: ICMR, pp. 379–387 (2018)

    Google Scholar 

  31. Zhu, Y., Lan, Z., Newsam, S., Hauptmann, A.G.: Hidden two-stream convolutional networks for action recognition. arXiv preprint arXiv:1704.00389 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Du, Z., Li, A., Wang, Y. (2020). Assessing Action Quality via Attentive Spatio-Temporal Convolutional Networks. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12306. Springer, Cham. https://doi.org/10.1007/978-3-030-60639-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60639-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60638-1

  • Online ISBN: 978-3-030-60639-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics