Skip to main content

Improving Backbones Performance by Complex Architectures

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12306))

Included in the following conference series:

  • 1504 Accesses

Abstract

Recently, Convolution Neural Networks (CNNs) have achieved great success in computer vision. To further boost the performance, the depth of the backbone network is continuously increased, which improves the capacity of feature learning but also brings the heavy burden in computation. To address the issues, this paper introduces a complex convolution method to systematically improve the performance of the backbone network. Our contributions are three-fold: 1) the complex architecture backbone network can improve the classification performance without increasing or even reducing the number of parameters; 2) for the detection task, the complex architecture backbone network can improve the ability of feature map extraction, at the same time our joint bounding box generation method using both real and imaginary parts of complex features can obviously improve the object detection ability. 3) the proposed method has a strong generalization ability for both detection and classification tasks. We have achieved significant performance improvements in both classification and detection tasks, which validate the effectiveness of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiao, L., Zhang, F., Liu, F., et al.: A survey of deep learning-based object detection. IEEE Access 7, 128837–128868 (2019)

    Article  Google Scholar 

  2. Hu, Y., Yang, Y., Zhang, J., et al.: Attentional kernel encoding networks for fine-grained visual categorization. IEEE Trans. Circ. Syst. Video Technol. (2020)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  4. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  6. Xie, S., Girshick, R., Dollár, P., et al.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  7. Gao, S., Cheng, M.M., Zhao, K., et al.: Res2net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  8. Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107(8), 1655–1674 (2019)

    Article  Google Scholar 

  9. Howard, A.G., Zhu, M., Chen, B., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  10. Zhang, X., Zhou, X., Lin, M., et al.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  11. Iandola, F.N., Han, S., Moskewicz, M.W., et al.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

  12. Trabelsi, C., Bilaniuk, O., Zhang, Y., et al.: Deep complex networks. arXiv preprint arXiv:1705.09792 (2017)

  13. Choi, H.S., Kim, J.H., Huh, J., et al.: Phase-aware speech enhancement with deep complex U-Net. arXiv preprint arXiv:1903.03107 (2019)

  14. Pfeifenberger, L., Zöhrer, M., Pernkopf, F.: Deep complex-valued neural beamformers. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2902–2906. IEEE (2019)

    Google Scholar 

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  16. Li, Z., Peng, C., Yu, G., et al.: Detnet: a backbone network for object detection. arXiv preprint arXiv:1804.06215 (2018)

  17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. In: Handbook of Systemic Autoimmune Diseases, vol. 1, no. 4 (2009)

    Google Scholar 

  18. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: 2004 Conference on Computer Vision and Pattern Recognition Workshop, p. 178. IEEE (2004)

    Google Scholar 

  19. Deng, J., Dong, W., Socher, R., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  21. Huang, G., Liu, Z., Van Der Maaten, L., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  22. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  25. Luan, S., Chen, C., Zhang, B., et al.: Gabor convolutional networks. IEEE Trans. Image Process. 27(9), 4357–4366 (2018)

    Article  MathSciNet  Google Scholar 

  26. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  27. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  28. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  29. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  30. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  31. Liu, W., et al.: SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  32. Liu, Z., Jiang, Z., Wei, F.: OD-GCN object detection by knowledge graph with GCN. arXiv preprint arXiv:1908.04385 (2019)

  33. Kong, T., Sun, F., Yao, A., et al.: Ron: reverse connection with objectness prior networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5936–5944 (2017)

    Google Scholar 

  34. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934 (2020)

Download references

Acknowledgement

Baochang Zhang is also with Shenzhen Academy of Aerospace Technology, Shenzhen, China, and he is the corresponding author. He is in part Supported by Shenzhen Science and Technology Program (No. KQTD2016112515134654).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shao, J., Hu, Y., Liu, Z., Ma, T., Zhang, B. (2020). Improving Backbones Performance by Complex Architectures. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12306. Springer, Cham. https://doi.org/10.1007/978-3-030-60639-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60639-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60638-1

  • Online ISBN: 978-3-030-60639-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics