Skip to main content

Comparison of Different Information Display Modes for Smart Glasses Assisted Machine Operations

  • Conference paper
  • First Online:
  • 1508 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1294))

Abstract

A pair of commercially available smart glasses, Epson BT-200, was evaluated with different information display modes for assisting machine operators. Two information display modes were selected, displaying animated images only, and displaying animated images with text illustrations. Direction prompts were added in the system. Whether the prompts are helpful or not was also discussed in this study. Task completion time and error rate were collected during the experiment. System Usability Scale (SUS) and NASA-Task Load Index (NASA-TLX) were used to collect subjective information after each experiment. Twenty participants (10 males and 10 females) were recruited. The results showed that the display mode of having smart glasses displaying animated images versus displaying animated images with text illustrations showed no significant difference in task completion time and error rate. But the significant difference was found in the result of SUS scores. Participants preferred the display mode of animate images with text illustrations according to the SUS scores. Moreover, the results indicated that the use of direction prompts had significant influences upon all the measures. Participants completed the tasks faster and had lower error rate by using the smart glasses with direction prompts. And the results of subjective ratings also showed higher SUS score and lower NASA-TLX score were associated with using smart glasses with direction prompts. Thus, the implementation of using smart glasses to guide machine operations should be considered the design of adding direction prompts to increase efficiency and effectiveness of the operations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barfield, W.: Fundamentals of Wearable Computers and Augmented Reality. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  2. Syberfeldt, A., Danielsson, O., Gustavsson, P.: Augmented reality smart glasses in the smart factory: product evaluation guidelines and review of available products. IEEE Access 5, 9118–9130 (2017)

    Article  Google Scholar 

  3. Paelke, V.: Augmented reality in the smart factory: supporting workers in an industry 4.0. environment. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–4. IEEE, September 2014

    Google Scholar 

  4. Zheng, X.S., Matos da Silva, P., Foucault, C., Dasari, S., Yuan, M., Goose, S.: Wearable solution for industrial maintenance. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 311–314, April 2015

    Google Scholar 

  5. Baron, L., Braune, A.: Case study on applying augmented reality for process supervision in industrial use cases. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4. IEEE, September 2016

    Google Scholar 

  6. Wille, M., Scholl, P.M., Wischniewski, S., Van Laerhoven, K.: Comparing Google glass with tablet-pc as guidance system for assembling tasks. In: 2014 11th International Conference on Wearable and Implantable Body Sensor Networks Workshops, pp. 38–41. IEEE, June 2014

    Google Scholar 

  7. Palmarini, R., Erkoyuncu, J.A., Roy, R., Torabmostaedi, H.: A systematic review of augmented reality applications in maintenance. Robot. Comput. Integr. Manuf. 49, 215–228 (2018)

    Article  Google Scholar 

  8. Tonnis, M., Klinker, G.: Effective control of a car driver’s attention for visual and acoustic guidance towards the direction of imminent dangers. In: 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 13–22. IEEE, October 2006

    Google Scholar 

  9. Henderson, S., Feiner, S.: Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Trans. Visual Comput. Graphics 17(10), 1355–1368 (2010)

    Article  Google Scholar 

  10. Rehrl, K., Häusler, E., Steinmann, R., Leitinger, S., Bell, D., Weber, M.: Pedestrian navigation with augmented reality, voice and digital map: results from a field study assessing performance and user experience. In: Gartner, G., Ortag, F. (eds.) Advances in Location-Based Services. LNGC, pp. 3–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24198-7_1

    Chapter  Google Scholar 

  11. Sanna, A., Manuri, F., Lamberti, F., Paravati, G., Pezzolla, P.: Using handheld devices to support augmented reality-based maintenance and assembly tasks. In: 2015 IEEE International Conference on Consumer Electronics (ICCE), pp. 178–179. IEEE, January 2015

    Google Scholar 

  12. Renner, P., Pfeiffer, T.: Evaluation of attention guiding techniques for augmented reality-based assistance in picking and assembly tasks. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces Companion, pp. 89–92, March 2017

    Google Scholar 

  13. Brooke, J.: SUS-a quick and dirty usability scale. In: Usability Evaluation in Industry, vol. 189, no. 194, pp. 4–7 (1996)

    Google Scholar 

  14. Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, no. 9, pp. 904–908. Sage Publications, Sage CA, Los Angeles, October 2006

    Google Scholar 

  15. Diaz, C., Hincapié, M., Moreno, G.: How the type of content in educative augmented reality application affects the learning experience. Procedia Comput. Sci. 75, 205–212 (2015)

    Article  Google Scholar 

  16. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)

    Google Scholar 

  17. Volmer, B., et al.: A comparison of predictive spatial augmented reality cues for procedural tasks. IEEE Trans. Visual Comput. Graphics 24(11), 2846–2856 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Jiun J. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, CH., Hsiao, CY., Tai, AT., Wang, MJ.J. (2020). Comparison of Different Information Display Modes for Smart Glasses Assisted Machine Operations. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2020 – Late Breaking Posters. HCII 2020. Communications in Computer and Information Science, vol 1294. Springer, Cham. https://doi.org/10.1007/978-3-030-60703-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60703-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60702-9

  • Online ISBN: 978-3-030-60703-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics