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Abstract. In this work a monocular machine vision based pose estimation system 

is developed for industrial robots and the accuracy of the estimated pose is im-

proved via sparse regression. The proposed sparse regression based method is 

used improve the accuracy obtained from the Levenberg-Marquardt (LM) based 

pose estimation algorithm during the trajectory tracking of an industrial robot’s 

end effector. The proposed method utilizes a set of basis functions to sparsely 

identify the nonlinear relationship between the estimated pose and the true pose 

provided by a laser tracker. Moreover, a camera target was designed and fitted 

with fiducial markers, and to prevent ambiguities in pose estimation, the markers 

are placed in such a way to guarantee the detection of at least two distinct non 

parallel markers from a single camera within ± 90° in all directions of the cam-

era’s view. The effectiveness of the proposed method is validated by an experi-

mental study performed using a KUKA KR240 R2900 ultra robot while follow-

ing sixteen distinct trajectories based on ISO 9238. The obtained results show 

that the proposed method provides parsimonious models which improve the pose 

estimation accuracy and precision of the vision based system during trajectory 

tracking of industrial robots' end effector. 

Keywords: Machine Vision, Pose Estimation, Industrial Robots, Trajectory 

Tracking, Sparse Regression. 

1 Introduction 

In the near future industrial robots are projected to replace CNC machines for machin-

ing processes due to their flexibility, lower prices and large working space. The re-

quired accuracy for robotic machining is around ±0.20 𝑚𝑚 based on aerospace spec-

ifications, but in reality, only accuracies around 1 𝑚𝑚 are obtained [1]. Therefore, the 

robot’s relatively low accuracy hinders them from being used in high precision appli-

cations.   

Some works in literature proposed implementation of static calibration or usage of 

secondary high accuracy encoders installed at each joint for increasing the accuracy of 

industrial robots [2, 3]. However, disturbances acting on the robots during processes 

are not taken into account in static calibration methods, and installation of secondary 
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encoders is very expensive and not feasible for all robots. Thus, real time path tracking 

and correction based on visual servoing is a feasible alternative to achieve the desired 

accuracies in manufacturing processes [4]. Many works in literature utilize highly ac-

curate sensors such as laser trackers or photogrammetry sensors in the feedback loop 

of visual servoing [5, 6]. However, these sensors are very expensive and sometimes 

more than the industrial robot. Hence, relatively cheaper alternatives based on monoc-

ular camera systems were proposed by many works in literature. Nissler et al. [7] pro-

posed utilization of AprilTag markers attached to the end effector of a robot. In their 

work they used optimization techniques to reduce positioning tracking errors to less 

than 10 mm. However, they used only planar markers thus faced rank deficiency prob-

lems in pose estimation and their work was not evaluated during trajectory tracking. 

Moreover, two data fusion methods based on multi sensor optimal information algo-

rithms (MOIFA) and Kalman filter (KF) were proposed by Liu et al. [8]. These methods 

were used for fusing orientation data acquired from a digital inclinometer and position 

data obtained from a photogrammetry system during positioning of a KP 5 Arc Kuka 

robot’s end effector at seventy six points in a one meter cube space. However, they did 

not report orientation errors and did not evaluate their approach for trajectory tracking. 

In general, these works in literature assume the dynamics or kinematics of the industrial 

robots are known in the proposed eye in hand approaches. As for the KF type methods, 

they assume a linear dynamic process model along with the process and measurement 

noise to be known as well. Some works in literature utilized extended Kalman filter 

(EKF) [9], and adaptive Kalman filter (AKF) [10] to overcome these shortcomings in 

the estimation of an industrial robot’s pose. However, an accurate dynamic process 

model required for EKF is hard to obtain, and in the proposed AKF based methods 

measurement noise and time varying effects due to the robot’s trajectories are not con-

sidered, which in turn degrades their effectiveness. In these cases, data driven modeling 

techniques that can take into account all kinds of sensor errors, sensor noise and uncer-

tainties have been found to be more effective [11, 12, 13, 14]. 

In this work, an eye to hand camera based pose estimation system is developed for 

industrial robots through which a target object trackable with a monocular camera with 

± 90° in all directions is designed. The designed camera target (CT) is fitted with fidu-

cial markers where their placement guarantees the detection of at least two non-planar 

markers from a single frame, thus preventing ambiguities in pose estimation.  

Moreover, a data driven modeling method based on sparse regression is proposed for 

improving the pose estimated by the Levenberg Marquardt (LM) based algorithm [15], 

where the ground truth is obtained from a laser tracker. Using the proposed method, 

one can train all the camera based systems using a single laser tracker in a factory where 

several industrial robots are required to perform the same task. 

The rest of the manuscript is structured as follows: In Section 2, a method for im-

proving vision based pose estimation based on sparse regression is presented. The ef-

fectiveness of the proposed approach is validated by an experimental study in Section 

3 where design and detection of the camera target for pose estimation are also described, 

followed by the conclusion in Section 4. 
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2 Improved Vision Based Pose Estimation Using Sparse 

Regression 

This work proposes to improve the pose estimation accuracy of vision based systems 

through a data driven approach based on sparse regression. Using this method existing 

camera based systems can be made to provide better accuracies when trained using the 

ground truth pose (𝑇𝑋, 𝑇𝑌 , 𝑇𝑍 , α, β, γ) such as the one provided by a laser tracker. In 

order to formulate this problem under a sparse regression framework, the inputs and 

ground truth of the system needs to be determined properly. The ground truth in pose 

estimation problem can obtained through the highly accurate laser tracker systems. As 

for inputs, the estimated pose (𝑇̂𝑋, 𝑇̂𝑌, 𝑇̂𝑍, α̂, β̂, γ̂) provided by the vision system can be 

obtained through standard pose estimation algorithms in literature such as the Leven-

berg Marquardt (LM) based algorithm [15]. 

As for the proposed method based on sparse regression, this work builds upon the 

work presented by Brunton et al. in which they formulated sparse identification of non-

linear dynamics (SINDy) [16] for discovering governing dynamical equations from 

data. They leverage the fact that only a few terms are usually required to define dynam-

ics of a physical system. Thus, the equations become sparse in a high dimensional non-

linear function space. Their work is formulated for dynamic systems where large data 

is collected for determining a function in state space which defines the equations of 

motion. In their formulation, they collect a time-history of the state 𝑋(𝑡) and its deriv-

ative from which candidate nonlinear functions are generated. These functions can be 

constants, higher order polynomials, sinusoidal functions, ..., etc. Afterwards, they for-

mulate the problem as sparse regression and propose a method based on sequential 

thresholded least-squares algorithm [16] to solve it. This method is a faster and robust 

alternative to the least absolute shrinkage and selection operator (LASSO) [17] which 

is an ℓ1-regularized regression that promotes sparsity. Using their proposed method, 

the sparse vectors of coefficients defining the dynamics can be determined, showing 

which nonlinearities are active in the physical system. This results in parsimonious 

models that balance accuracy with model complexity to avoid overfitting. 

However, in this work the sparse regression problem is formulated for sparse iden-

tification of nonlinear statics (SINS). In particular, the relationship between the pose 

estimated by the vision system and the pose provided by the laser tracker is assumed to 

be represented by the following static nonlinear model:   

𝑌 = Ψ(𝑋)Φ (1) 

where 

𝑋 = [
𝑥1(𝑡1) ⋯ 𝑥6(𝑡1)

⋮ ⋱ ⋮
𝑥1(𝑡𝑚) ⋯ 𝑥6(𝑡𝑚)

] and 𝑌 = [
𝑦1(𝑡1) ⋯ 𝑦6(𝑡1)

⋮ ⋱ ⋮
𝑦1(𝑡𝑚) ⋯ 𝑦6(𝑡𝑚)

] (2) 

Ψ(X) =  [1 𝑋 𝑋𝑃2] 
(3) 
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𝑋𝑃2 = [
𝑥1

2(𝑡1) 𝑥1(𝑡1)𝑥2(𝑡1) ⋯
⋮ ⋮ ⋱

𝑥1
2(𝑡𝑚) 𝑥1(𝑡𝑚)𝑥2(𝑡𝑚) ⋯

    
𝑥2

2(𝑡1)
⋮

𝑥2
2(𝑡𝑚)

   
𝑥2(𝑡1)𝑥3(𝑡1) ⋯ 𝑥6

2(𝑡1)
⋮ ⋱ ⋮

𝑥2(𝑡𝑚)𝑥3(𝑡𝑚) ⋯ 𝑥6
2(𝑡𝑚)

] (4) 

 

where 𝑥1 to 𝑥6 are the 𝑇̂𝑋, 𝑇̂𝑌, 𝑇̂𝑍, α̂, β̂, and γ̂ estimated by the LM based pose estimation 

algorithm, 𝑦1 to 𝑦6 are the ground truth 𝑇𝑋, 𝑇𝑌 , 𝑇𝑍 , α, β, and γ measured by the laser 

tracker, Φ contains the sparse vectors of coefficients, 𝑋𝑃2 denotes the quadratic nonlin-

earities in the variable 𝑋, and Ψ(𝑋) is the library consisting of candidate nonlinear 

functions of the columns of 𝑋. 

Each column of the augmented library Ψ(𝑋) represents a candidate function for de-

fining the relationship between the estimated and the ground truth pose. There is total 

freedom in choosing these functions and in this work the augmented library was con-

structed using up to 2𝑛𝑑 order polynomials (𝑋𝑃2) with cross terms and thus the resulting 

size of the sparse regression problem using 𝑚 samples is as follows: 

𝑌𝑚𝑥6 = Ψ(𝑋𝑚𝑥6)𝑚𝑥28Φ28𝑥6 (5) 

The sequential thresholded least-squares based algorithm proposed by Brunton et al. 

[16] starts with finding a least squares solution for Φ and then setting all of its coeffi-

cients smaller than a threshold value (λ) to zero. After determining the indices of the 

remaining nonzero coefficients, another least squares solution for Φ onto the remaining 

indices is obtained. This procedure is performed repeatedly for the new coefficients 

using the same λ until the nonzero coefficients converge. This algorithm is computa-

tionally efficient and rapidly converges to a sparse solution in a small number of itera-

tions. Moreover, only a single parameter λ is required to determine the degree of spar-

sity in Φ. The overall flowchart of the proposed method is shown in Fig. 1. 

 

Fig. 1. The proposed sparse identification of nonlinear statics (SINS) for improving vision based 

pose estimation. 
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3 Experimental Results 

In this section the design of the camera target for pose estimation, detection of the cam-

era target and improved pose estimation results using the proposed method will be pre-

sented. 

3.1 Design of the Camera Target for Pose Estimation 

In this work the pose of a KUKA KR240 R2900 ultra robot’s end effector was tracked 

in real time using a vision based pose estimation system utilizing a Basler acA2040-

120um camera and was compared with the measurements obtained from a Leica AT960 

laser tracker as shown in Fig. 2. The laser tracker works in tandem with the T-MAC 

probe which is rigidly attached to the end effector and the system has an accuracy of 

±10 micrometers. A target object fitted with markers was designed and fixed to the end 

effector of the robot so as to estimate its pose from the camera. Since vision based pose 

estimation algorithms require the exact location of markers on the image plane, it is 

crucial to design and distribute the markers properly on the target to be tracked by the 

camera. Therefore, this work proposes utilization of fiducial markers generated from 

the ArUco library that can be detected robustly in real time. ArUco markers are 2D 

barcode like patterns usually used in robotics and augmented reality applications [18]. 

 

  

Fig. 2. Experimental Setup. 

The camera target (CT) was designed to have 5 faces with each face holding 8 ArUco 

markers. In order to produce nonplanar markers in each face, they were fitted with 4 

planar markers and the other 4 were placed at 60° with the horizontal axis. This was 

designed so as to avoid ambiguities in pose estimation algorithms resulting from the 

usage of points extracted from a single plane. In literature it has been proven that pose 

estimation algorithms can provide a unique solution when points extracted from at least 

two distinct non-parallel planes are used. The CT was built using 3D printing with a 

size of 250 × 234 × 250 𝑚𝑚 and had a weight of 500 𝑔𝑟. The markers were generated 

from ArUco’s 4 × 4 × 100 library and were fixed into 30 𝑚𝑚2 holes made in the con-

structed target object. Using this CT, the locations of all the markers in the object frame 

can be obtained from the CAD model and used in the vision based pose estimation 

algorithms. 
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3.2 Detection of the Camera Target 

In the experiments, the vision based pose estimation and synchronization of data with 

the laser tracker was performed in LabVIEW [19] software. The images were acquired 

from the Basler ac2040-120um camera at 375 𝐻𝑧 with a resolution of 640 × 480 pix-

els. These images were then fed into the python [20] node inside LabVIEW where the 

ArUco marker detection and Levenberg Marquardt based pose estimation algorithms 

were both operated at 1000 𝐻𝑧. Moreover, the proposed method can work at 6000 𝐻𝑧 

for a single frame as well. Therefore, the total processing time1 for each image is 

0.00216 seconds or about 463 𝐻𝑧. The estimated pose of the camera target (CT) as 

well as the detected markers are shown in Fig. 3. These results clearly show that the 

designed CT allows the detection of multiple nonplanar markers with a viewing angle 

of ±90° from all sides, hence rank deficiency problem is prevented in the pose estima-

tion algorithm. 

 

Fig. 3. (a) - (d) Samples showing marker detection (detected corners are in red) and estimated 

pose (red, green, blue coordinate axes) of the target object with respect to the camera frame. 

 
1 Tested on a workstation with Intel Xeon E5-1650 CPU @ 3.5GHz and 16 GB RAM. 
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3.3 Pose Estimation Results 

In order to evaluate the accuracy and precision of the camera based system, a trajectory 

tracking experiment based on ISO 9238 standard was conducted using a KUKA KR240 

R2900 robot. The accuracy and repeatability of industrial robots are typically evaluated 

using the ISO 9238 standard during which the robot is tasked with following a set of 

trajectories multiple times while changing or not changing the orientation of the robot's 

end effector. To evaluate the effectiveness of the proposed SINS algorithm and the 

constructed vision based system, the robot’s end effector was set to follow 16 distinct 

trajectories based on the ISO 9238 standard while changing its orientation continuously. 

As per the ISO 9238 guidelines, each of these trajectories contained 5 specific points at 

which the robot was stopped for 5 seconds and the experiment took 105.9 minutes to 

complete.  

First the LM based pose estimation algorithm was implemented for the trajectory 

tracking of the KUKA KR240 R2900 robot’s end effector. Then, the proposed sparse 

identification of nonlinear statics (SINS) method was used to improve the pose esti-

mated by the LM based algorithm. In order to evaluate the robustness of the proposed 

method, the training phase was performed three times using 30%, 50%, and 70% of 

the data and was validated on the remaining 70%, 50%, and 30% of the data based the 

time series cross validation [21] approach. The training was performed for 10 iterations 

using a threshold value (λ) of 0.001 for the each of the three aforementioned cases and 

the obtained results are tabulated in Table 1 to Table 3 for the trajectory tracking based 

on ISO 9238. The errors given in these tables which are denoted as 𝐸𝑋, 𝐸𝑌, 𝐸𝑍, 𝐸𝑅𝑜𝑙𝑙 , 

𝐸𝑃𝑖𝑡𝑐ℎ, and 𝐸𝑌𝑎𝑤  are the absolute errors between the ground truth pose provided by the 

laser tracker and the estimated pose by the LM based algorithm and improved with 

SINS. These tracking errors are given in 𝑚𝑚 for translation (𝐸𝑋, 𝐸𝑌, 𝐸𝑍) and in degrees 

(°) for orientation (𝐸𝑅𝑜𝑙𝑙 , 𝐸𝑃𝑖𝑡𝑐ℎ, 𝐸𝑌𝑎𝑤). 

Table 1. Pose tracking errors during trajectory tracking based on ISO 9238, trained with 30% of 

the dataset and validated on the rest. 

Training Size 30% of the Dataset 

Error for the 
Validation Set 
(70% of the 
Dataset) 

𝐸𝑋 (𝑚𝑚) 𝐸𝑌 (𝑚𝑚) 𝐸𝑍 (𝑚𝑚) 𝐸𝑅𝑜𝑙𝑙 (°) 𝐸𝑃𝑖𝑡𝑐ℎ  (°) 𝐸𝑌𝑎𝑤 (°) 

LM 
9.84 

(9.86) 
7.30 

(6.61) 
16.44 

(14.07) 
0.93 

(0.33) 
1.02 

(0.89) 
1.15 

(0.72) 

LM with SINS 
8.01 

(8.98) 
6.19 

(5.76) 
11.62 
(9.80) 

0.20 
(0.18) 

0.85 
(0.78) 

0.56 
(0.46) 

The ( ) below the errors contain their standard deviation. 
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Table 2. Pose tracking errors during trajectory tracking based on ISO 9238, trained with 50% of 

the dataset and validated on the rest. 

Training Size 50% of the Dataset 

Error for the 
Validation Set 
(50% of the 
Dataset) 

𝐸𝑋 (𝑚𝑚) 𝐸𝑌 (𝑚𝑚) 𝐸𝑍 (𝑚𝑚) 𝐸𝑅𝑜𝑙𝑙 (°) 𝐸𝑃𝑖𝑡𝑐ℎ (°) 𝐸𝑌𝑎𝑤 (°) 

LM 
9.85 

(9.87) 
7.35 

 (6.62) 
16.23 

 (13.60) 
0.92 

(0.32) 
1.01 

(0.88) 
1.14 

(0.71) 

LM with SINS 
7.85 

(8.70) 
6.04 

 (5.72) 
10.32 
 (9.20) 

0.19 
(0.17) 

0.82 
(0.74) 

0.53 
(0.46) 

The ( ) below the errors contain their standard deviation. 

Table 3. Pose tracking errors during trajectory tracking based on ISO 9238, trained with 70% of 

the dataset and validated on the rest. 

Training Size 70% of the Dataset 

Error for the 
Validation Set 
(30% of the 
Dataset) 

𝐸𝑋 (𝑚𝑚) 𝐸𝑌 (𝑚𝑚) 𝐸𝑍 (𝑚𝑚) 𝐸𝑅𝑜𝑙𝑙 (°) 𝐸𝑃𝑖𝑡𝑐ℎ (°) 𝐸𝑌𝑎𝑤 (°) 

LM 
10.11  

(10.20) 
7.39 

(6.78) 
15.794 
 (13.69) 

0.91 
(0.33) 

1.04 
(0.87) 

1.10  
(0.67) 

LM with SINS 
7.98  

(8.98) 
6.01  

(5.84) 
9.66  

(8.67) 
0.19 

(0.17) 
0.81 

(0.73) 
0.51 

 (0.46) 

The ( ) below the errors contain their standard deviation. 
 

As seen from the errors in these tables, the proposed method is able to reduce the posi-

tion tracking errors at least by 1.23, 1.18, and 1.42 times and up to 1.26, 1.23, and 1.64 

times for X, Y, and Z axes, respectively when compared with the pure LM based algo-

rithm using 30% and 70% of the data for training the models. This is in addition to 

reducing the standard deviation of the position errors by up to 1.14, 1.16, and 1.58 times 

for X, Y, and Z axes, respectively. Furthermore, the orientation tracking errors were 

reduced by at least 4.65, 1.20, and 2.05 times and up to 4.79, 1.28, and 2.16 times for 

Roll, Pitch and Yaw axes, respectively. Moreover, the standard deviation of orientation 

errors were reduced by up to 1.94, 1.19, and 1.46 times for the Roll, Pitch and Yaw 

axes, respectively. From these results, it is seen that the proposed method is able to 

improve the position and orientation tracking accuracies even when 30% of the data is 

used for training the proposed method, thus proving its robustness.  

Fig. 4 and Fig. 5 show the position and orientation trajectories of the laser target as 

tracked by the laser tracker in blue. The gray trajectories are the ones estimated by the 

camera system using LM based pose estimation algorithm and the red trajectories show 

the improved pose by the proposed SINS method. These images were obtained by train-

ing the proposed method with 70% of the data and evaluating it on the whole dataset.  
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Fig. 4. Position tracking results based on ISO 9238. 

 

Fig. 5. Orientation tracking results based on ISO 9238.  

It should be noted that the conducted experiment based on ISO 9238 is very challenging 

for vision based pose estimation due to the distance between the tracked target and the 

camera increasing a lot, thus decreasing the estimated pose’s accuracy. This is particu-

larly the case in the conducted experiment due to the robot covering a large working 

space of 1140 × 610 × 945 𝑚𝑚 along the 𝑋, 𝑌, and 𝑍 axes, respectively. Owing to 

this and the fact that the camera had to be placed 1 meter away from the closes point of 

the work space due to viewing angle restrictions, the distance between the robot’s end 

effector and the camera changed from 1 meters to 3 meters during the 16 trajectories 

followed by the robot, thus making the position errors relatively high. 

Moreover, the determined sparse coefficients for training the model with 70% of the 

data are shown in Table 4. As seen, for position (𝜙1,  𝜙2,  𝜙3) only about 50% and for 

orientation (𝜙4,  𝜙5,  𝜙6) only around 30% of the coefficients are active. This makes 

the model sparse in the space of possible functions thus determining only the fewest 
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terms to accurately represent the data. Furthermore, such a method is very intuitive in 

that one can clearly see the coefficients defining the nonlinear relationship and thus 

provides more insight into the structure of the problem at hand. Besides, training such 

a model in MATLAB [22] took only 0.35, 0.68, and 0.87 seconds for 30%, 50%, and 

70% of the data containing 63551 samples.  

Table 4. The identified sparse coefficients for training a model with 70% of the data. 

  𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜙6 

1 -0.54955 5.483865 -2.34268 -0.80253 0.169695 -0.76172 
X(t) 0.984231 0.01329 0.006688 0 0 0 
Y(t) -0.00315 0.994628 -0.00959 0 -0.00201 0 
Z(t) 0.001783 -0.00849 0.934572 0 0 0 
Roll(t) 2.207604 -1.73696 1.395375 0.889916 -0.15587 -0.17946 
Pitch(t) 0.008375 -0.18872 0.4609 -0.01473 0.980488 -0.008 
Yaw(t) 0.519546 -0.77316 0.382094 -0.01947 -0.06671 0.892436 
X(t)X(t) 0 0 0 0 0 0 
X(t)Y(t) 0 0 0 0 0 0 
X(t)Z(t) 0 0 0 0 0 0 
X(t)Roll(t) 0 -0.00318 0 0 0 0 
X(t)Pitch(t) 0 0 0 0 0 0 
X(t)Yaw(t) 0 -0.00111 0 0 0 0 
Y(t)Y(t) 0 0 0 0 0 0 
Y(t)Z(t) 0 0 0 0 0 0 
Y(t)Roll(t) -0.00285 0 -0.00246 0 0 0 
Y(t)Pitch(t) 0 0 0 0 0 0 
Y(t)Yaw(t) 0 0 0 0 0 0 
Z(t)Z(t) 0 0 0 0 0 0 
Z(t)Roll(t) 0 0 0 0 0 0 
Z(t)Pitch(t) 0 0 0 0 0 0 
Z(t)Yaw(t) 0 0 0 0 0 0 
Roll(t)Roll(t) 0.129671 -0.33664 0.133981 -0.0037 -0.00789 -0.02765 
Roll(t)Pitch(t) -0.11072 0.008094 -0.12339 -0.00193 0.018478 0.00901 
Roll(t)Yaw(t) 0.085 -0.23532 0.099387 0 -0.00359 -0.02075 
Pitch(t)Pitch(t) -0.00346 -0.00202 0.004847 0 0 0 
Pitch(t)Yaw(t) -0.01809 -0.07036 0 0.006763 0.005202 -0.0072 
Yaw(t)Yaw(t) 0.006045 -0.03945 0.021693 0 0 -0.00299 

4 Conclusion 

In this work a monocular machine vision based system was developed for estimating 

the pose of industrial robots' end effector in real time. A camera target guaranteeing the 

detectability of at least two non-parallel markers within ± 90° in all directions of the 

camera's view was designed and fitted with fiducial markers. Moreover, sparse identi-

fication of nonlinear statics (SINS) based on sparse regression was proposed to deter-

mine a model with the least number of active coefficients relating the pose estimated 

by Levenberg-Marquardt (LM) to ground truth pose provided by a laser tracker. Thus, 

providing a parsimonious model to increase the accuracy and precision of the vision 

based pose estimation.   

The proposed method was validated by tracking an industrial robot's end effector for 

16 distinct trajectories based on ISO 9238. The trajectories were followed by a KUKA 
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KR240 R2900 ultra robot and the ground truth data was provided by the Leica AT960 

laser tracker. As seen from the experimental results, the proposed method was able to 

reduce the position tracking errors by up to 1.26, 1.23, and 1.64 times for X, Y, and Z 

axes, respectively when compared with the pure LM based algorithm. This is in addi-

tion to reducing the orientation tracking errors by up to 4.79, 1.28, and 2.16 times for 

Roll, Pitch and Yaw axes, respectively. Moreover, by using the proposed method the 

standard deviation of the position errors were reduced by up to 1.14, 1.16, and 1.58 

times for X, Y, and Z axes, respectively. All the while reducing the standard deviation 

of the orientation errors by up to 1.94, 1.19, and 1.46 times for the Roll, Pitch and Yaw 

axes, respectively. Therefore, the proposed method is able to increase the accuracy and 

precision of the standard LM based pose estimation algorithm during trajectory tracking 

of industrial robots' end effector.  

The determined sparse coefficients for training the model showed that only about 

50% of the coefficients were active for position improvement, whereas for orientation, 

only around 30% of the coefficients were active. Thus, only the most important terms 

accurately representing the data were determined using the proposed method. This re-

sulted in obtaining simple and robust models very fast, where one can clearly see the 

coefficients defining the nonlinear static system. 
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