Skip to main content

An Active Disturbance Rejection Control Method for Robot Manipulators

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12465))

Abstract

This paper proposed an active disturbance control method for tracking control of robot manipulators. Firstly, all of the system uncertainties and external disturbances are considered as an extended variable and a disturbance observer is used to exactly approximate this total uncertainty. Therefore, accurate information is provided for the control loop and chattering behavior in the control input is significantly reduced. Next, to improve the response speed and tracking accuracy, a sliding mode control is synthesized by combining the non-singular fast terminal sliding mode control and the designed observer. The proposed is reconstructed using backstepping control to obtain the asymptotic stability for the whole control system based on Lyapunov theory. Finally, the examples are simulated to demonstrate the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sun, D., Hu, S., Shao, X., Liu, C.: Global stability of a saturated nonlinear PID controller for robot manipulators. IEEE Trans. Control Syst. Technol. 17(4), 892–899 (2009)

    Article  Google Scholar 

  2. Yu, W., Rosen, J.: Neural PID control of robot manipulators with application to an upper limb exoskeleton. IEEE Trans. Cybern. 43(2), 673–684 (2013)

    Article  Google Scholar 

  3. Song, Z., Yi, J., Zhao, D., Li, X.: A computed torque controller for uncertain robotic manipulator systems: fuzzy approach. Fuzzy Sets Syst. 154(2), 208–226 (2005)

    Google Scholar 

  4. Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of mechanical manipulators. Int. J. Robot. Res. 6(2), 16–28 (1987)

    Article  Google Scholar 

  5. Lin, F., Brandt, R.D.: An optimal control approach to robust control of robot manipulators. IEEE Trans. Robot. Autom. 14(1), 69–77 (1998)

    Article  Google Scholar 

  6. Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58(6), 2444–2453 (2010)

    Article  Google Scholar 

  7. Truong, T.N., Kang, H.J., Le, T.D.: Adaptive neural sliding mode control for 3-DOF planar parallel manipulators. In: Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control, pp. 1–6 (2019)

    Google Scholar 

  8. Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern.: Syst. 49(7), 1448–1458 (2018)

    Article  Google Scholar 

  9. Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MathSciNet  Google Scholar 

  10. Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009)

    Article  Google Scholar 

  11. Vo, A.T., Kang, H.J.: An adaptive terminal sliding mode control for robot manipulators with non-singular terminal sliding surface variables. IEEE Access 7, 8701–8712 (2018)

    Article  Google Scholar 

  12. Laghrouche, S., Plestan, F., Glumineau, A.: Higher order sliding mode control based on integral sliding mode. Automatica 43(3), 531–537 (2007)

    Article  MathSciNet  Google Scholar 

  13. Zhang, Y., Li, R., Xue, T., Liu, Z., Yao, Z.: An analysis of the stability and chattering reduction of high-order sliding mode tracking control for a hypersonic vehicle. Inf. Sci. 348, 25–48 (2016)

    Article  MathSciNet  Google Scholar 

  14. Anh Tuan, V., Kang, H.J.: A new finite time control solution for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting scheme. J. Comput. Nonlinear Dyn. 14(3) (2019)

    Google Scholar 

  15. Chalanga, A., Kamal, S., Fridman, L.M., Bandyopadhyay, B., Moreno, J.A.: Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans. Ind. Electron. 63(6), 3677–3685 (2016)

    Article  Google Scholar 

  16. Doan, Q.V., Le, T.D., Vo, A.T.: Synchronization full-order terminal sliding mode control for an uncertain 3-DOF planar parallel robotic manipulator. Appl. Sci. 9(9), 1756 (2019)

    Article  Google Scholar 

  17. Feng, Y., Zhou, M., Zheng, X., Han, F., Yu, X.: Full-order terminal sliding-mode control of MIMO systems with unmatched uncertainties. J. Franklin Inst. 355(2), 653–674 (2018)

    Article  MathSciNet  Google Scholar 

  18. Chen, M.S., Hwang, Y.R., Tomizuka, M.: A state-dependent boundary layer design for sliding mode control. IEEE Trans. Autom. Control 47(10), 1677–1681 (2002)

    Article  MathSciNet  Google Scholar 

  19. Li, S., Yang, J., Chen, W.H., Chen, X.: Disturbance Observer-Based Control: Methods and Applications. CRC Press, Boca Raton (2014)

    Google Scholar 

  20. Liu, J., Wang, X.: Advanced sliding mode control for mechanical systems, pp. 206–210. Springer, Beijing (2012). https://doi.org/10.1007/978-3-642-20907-9

  21. Zhang, J., Liu, X., Xia, Y., Zuo, Z., Wang, Y.: Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances. IEEE Trans. Ind. Electron. 63(11), 7040–7048 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1D1A3A03103528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Truong, T.N., Kang, HJ., Vo, A.T. (2020). An Active Disturbance Rejection Control Method for Robot Manipulators. In: Huang, DS., Premaratne, P. (eds) Intelligent Computing Methodologies. ICIC 2020. Lecture Notes in Computer Science(), vol 12465. Springer, Cham. https://doi.org/10.1007/978-3-030-60796-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60796-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60795-1

  • Online ISBN: 978-3-030-60796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics