Skip to main content

Towards a Universal Steganalyser Using Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12465))

Abstract

A universal steganalyser has been the goal of many research leading to some good trials. Such steganalysers relied on machine learning and a wide range of features that can be extracted from images. However, increasing the dimensionality of the extracted features leads to the rapid rise in the complexity of algorithms. In recent years, some studies have indicated that well-designed convolutional neural networks (CNN) can achieve comparable performance to the two-step machine learning approaches. This paper aims to investigate different CNN architectures and diverse training strategies to propose a universal steganalysis model that can detect the presence of secret data in a colour stego-image. Since the detection of a stego-image can be considered as a classification problem, a CNN-based classifier has been proposed here. The experimental results of the proposed approach proved the efficiency in the main aspects of image steganography compared with the current state-of-the-art methods. However, a universal steganalysis is still unachievable, and more work should be done in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Holotyak, T., Fridrich, J., Voloshynovskiy, S.: Blind statistical steganalysis of additive steganography using wavelet higher order statistics. In: Dittmann, J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp. 273–274. Springer, Heidelberg (2005). https://doi.org/10.1007/11552055_31

    Chapter  Google Scholar 

  2. Nissar, A., Mir, A.H.: Classification of steganalysis techniques: a study. Digit. Signal Process. A Rev. J. 20(6), 1758–1770 (2010)

    Article  Google Scholar 

  3. Chutani, S., Goyal, A.: A review of forensic approaches to digital image Steganalysis. Multimed. Tools Appl. 78(13), 18169–18204 (2019). https://doi.org/10.1007/s11042-019-7217-0

    Article  Google Scholar 

  4. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  5. Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)

    Article  Google Scholar 

  6. Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steganalysis via convolutional neural networks. In: Proceedings of Media Watermarking, Security, and Forensics, vol. 9409, p. 94090J (2015)

    Google Scholar 

  7. Xu, G., Wu, H.-Z., Shi, Y.Q.: Ensemble of CNNs for steganalysis: an empirical study. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 103–107 (2016)

    Google Scholar 

  8. Xu, G., Wu, H.-Z., Shi, Y.-Q.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  9. Zeng, J., Tan, S., Li, B., Huang, J.: Large-scale JPEG image steganalysis using hybrid deep-learning framework. IEEE Trans. Inf. Forensics Secur. 13(5), 1200–1214 (2017)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Xu, G.: Deep convolutional neural network to detect J-UNIWARD. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 67–73 (2017)

    Google Scholar 

  12. Huang, X., Wang, S., Sun, T., Liu, G., Lin, X.: Steganalysis of adaptive JPEG steganography based on ResDet. In: Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA 2018), pp. 549–553 (2018)

    Google Scholar 

  13. Chaumont, M.: Deep learning in steganography and steganalysis from 2015 to 2018. In: Digital Media Steganography: Principles, Algorithms, Advances, pp. 1–39 (2020)

    Google Scholar 

  14. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)

    Article  Google Scholar 

  15. Yedroudj, M., Chaumont, M., Comby, F.: How to augment a small learning set for improving the performances of a CNN-based steganalyzer?. Electron. Imaging 2018(7), 317-1–317-7 (2018)

    Google Scholar 

  16. Yedroudj, M., Comby, F., Chaumont, M.: Yedroudj-Net: an efficient CNN for spatial steganalysis. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), pp. 2092–2096 (2018)

    Google Scholar 

  17. Li, B., Wei, W., Ferreira, A., Tan, S.: ReST-Net: diverse activation modules and parallel subnets-based CNN for spatial image steganalysis. IEEE Signal Process. Lett. 25(5), 650–654 (2018)

    Article  Google Scholar 

  18. Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2018)

    Article  Google Scholar 

  19. Shen, S., Huang, L., Tian, Q.: A novel data hiding for color images based on pixel value difference and modulus function. Multimed. Tools Appl. 74(3), 707–728 (2015). https://doi.org/10.1007/s11042-014-2016-0

    Article  Google Scholar 

  20. Rabie, T., Kamel, I.: Toward optimal embedding capacity for transform domain steganography: a quad-tree adaptive-region approach. Multimed. Tools Appl. 76(6), 8627–8650 (2017). https://doi.org/10.1007/s11042-016-3501-4

    Article  Google Scholar 

  21. Kumar, V., Kumar, D.: A modified DWT-based image steganography technique. Multimed. Tools Appl. 77(11), 13279–13308 (2018). https://doi.org/10.1007/s11042-017-4947-8

    Article  Google Scholar 

  22. Atawneh, S., Almomani, A., Al Bazar, H., Sumari, P., Gupta, B.: Secure and imperceptible digital image steganographic algorithm based on diamond encoding in DWT domain. Multimed. Tools Appl. 76(18), 18451–18472 (2017). https://doi.org/10.1007/s11042-016-3930-0

    Article  Google Scholar 

  23. Kumar, S., Muttoo, S.K.: Data hiding techniques based on wavelet-like transform and complex wavelet transforms. In: Proceedings International Symposium on Intelligence Information Processing and Trusted Computing (IPTC 2010), pp. 1–4 (2010)

    Google Scholar 

  24. Kadhim, I.J., Premaratne, P., Vial, P.J.: High capacity adaptive image steganography with cover region selection dual-tree complex wavelet transform. Cogn. Syst. Res. 60, 20–32 (2020)

    Article  Google Scholar 

  25. Kadhim, I.J., Premaratne, P., Vial, P.J.: Improved image steganography based on super-pixel and coefficient-plane-selection. Sig. Process. 171, 107481 (2020)

    Article  Google Scholar 

  26. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  27. Pibre, L., Jérôme, P., Ienco, D., Chaumont, M.: Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch. Electron. Imaging 2016(8), 1–11 (2016)

    Article  Google Scholar 

  28. Salomon, M., Couturier, R., Guyeux, C., Couchot, J.F., Bahi, J.M.: Steganalysis via a convolutional neural network using large convolution filters for embedding process with same stego key: a deep learning approach for telemedicine. Eur. Res. Telemed. 6(2), 79–92 (2017)

    Article  Google Scholar 

  29. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1

    Article  Google Scholar 

  30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  31. Al-Qershi, O.M., Khoo, B.E.: Evaluation of copy-move forgery detection: datasets and evaluation metrics. Multimed. Tools Appl. 77(24), 31807–31833 (2018). https://doi.org/10.1007/s11042-018-6201-4

    Article  Google Scholar 

  32. Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)

    Article  Google Scholar 

  33. Kodovský, J., Fridrich, J.: Quantitative steganalysis using rich models. In: Media Watermarking, Security, and Forensics, vol. 8665, p. 866500 (2013)

    Google Scholar 

  34. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  35. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inas Jawad Kadhim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kadhim, I.J., Premaratne, P., Vial, P.J., Al-Qershi, O.M., Al-Shebani, Q. (2020). Towards a Universal Steganalyser Using Convolutional Neural Networks. In: Huang, DS., Premaratne, P. (eds) Intelligent Computing Methodologies. ICIC 2020. Lecture Notes in Computer Science(), vol 12465. Springer, Cham. https://doi.org/10.1007/978-3-030-60796-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60796-8_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60795-1

  • Online ISBN: 978-3-030-60796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics