Skip to main content

Identification of Diseases and Pests in Tomato Plants Through Artificial Vision

  • Conference paper
  • First Online:
Book cover Intelligent Computing Methodologies (ICIC 2020)

Abstract

The extraction of characteristics, currently, plays an important role, likewise, it is considered a complex task, allowing to obtain essential descriptors of the processed images, differentiating particular characteristics between different classes, even when they share similarity with each other, guaranteeing the delivery of information not redundant to classification algorithms. In this research, a system for the recogntion of diseases and pests in tomato plant leaves has been implemented. For this reason, a methodology represented in three modules has been developed: segmentation, feature extraction and classification; as a first instance, the images are entered into the system, which were obtained from the Plantvillage free environment dataset; subsequently, two segmentation techniques, Otsu and PCA, have been used, testing the effectiveness of each one; likewise, feature extraction has been applied to the dataset, obtaining texture descriptors with the Haralick and LBP algorithm, and chromatic descriptors through the Hu moments, Fourier descriptors, discrete cosine transform DCT and Gabor characteristics; finally, classification algorithms such as: SVM, Backpropagation, Naive Bayes, KNN and Random Forests, were tested with the characteristics obtained from the previous stages, in addition, showing the performance of each one of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. INEGI: Encuesta nacional agropecuaria 2017. Report ENA. 2017, Instituto Nacional de Estadística y Geografía, México (2017). http://www.beta.inegi.org.mx/proyectos/encagro/ena/2017/

  2. CESAVEG: Campaña manejo fitosanitario del jitomate. Comité Estatal de Sanidad Vegetal de Guanajuato, A.C., Irapuato Guanajuato, 2016 edn. (2016)

    Google Scholar 

  3. Jiao, Z., Zhang, L., Yuan, C.-A., Qin, X., Shang, L.: Plant leaf recognition based on conditional generative adversarial nets. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2019. LNCS, vol. 11643, pp. 312–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26763-6_30

    Chapter  Google Scholar 

  4. Zheng, Y., Yuan, C.-A., Shang, L., Huang, Z.-K.: Leaf recognition based on capsule network. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2019. LNCS, vol. 11643, pp. 320–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26763-6_31

    Chapter  Google Scholar 

  5. Ayala Niño, D., Ruíz Castilla, J.S., Arévalo Zenteno, M.D., D. Jalili, L.: Complex Leaves Classification with Features Extractor. In: Huang, D.-S., Jo, K.-H., Huang, Z.-K. (eds.) ICIC 2019. LNCS, vol. 11644, pp. 758–769. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26969-2_72

    Chapter  Google Scholar 

  6. Cervantes, J., Garcia Lamont, F., Rodriguez Mazahua, L., Zarco Hidalgo, A., Ruiz Castilla, J.S.: Complex identification of plants from leaves. In: Huang, D.-S., Gromiha, M.M., Han, K., Hussain, A. (eds.) ICIC 2018. LNCS (LNAI), vol. 10956, pp. 376–387. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95957-3_41

    Chapter  Google Scholar 

  7. Jalili, L.D., Morales, A., Cervantes, J., Ruiz-Castilla, J.S.: Improving the performance of leaves identification by features selection with genetic algorithms. In: Figueroa-García, J.C., López-Santana, E.R., Ferro-Escobar, R. (eds.) WEA 2016. CCIS, vol. 657, pp. 103–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50880-1_10

    Chapter  Google Scholar 

  8. Cervantes, J., Taltempa, J., García-Lamont, F., Castilla, J.S.R., Rendon, A.Y., Jalili, L.D.: Análisis comparativo de las técnicas utilizadas en un sistema de reconocimiento de hojas de planta. Revista Iberoamericana de Automática e Informática Industrial RIAI 14(1), 104–114 (2017). https://doi.org/10.1016/j.riai.2016.09.005

  9. Dhingra, G., Kumar, V., Joshi, H.D.: Study of digital image processing techniques for leaf disease detection and classification. Multimed. Tools Appl. 77(15), 19951–20000 (2017). https://doi.org/10.1007/s11042-017-5445-8

    Article  Google Scholar 

  10. Garcia-Lamont, F., Cervantes, J., López, A., Rodriguez, L.: Segmentation of images by color features: a survey. Neurocomputing 292, 1–27 (2018). https://doi.org/10.1016/j.neucom.2018.01.091

    Article  Google Scholar 

  11. Wang, X.-f., Wang, Z., Zhang, S.-w.: Segmenting crop disease leaf image by modified fully-convolutional networks. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2019. LNCS, vol. 11643, pp. 646–652. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26763-6_62

    Chapter  Google Scholar 

  12. Gutierrez, A., Ansuategi, A., Susperregi, L., Tubío, C., Rankić, I., Lenza, L.: A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases. J. Sens. 2019, 1–15 (2019). https://doi.org/10.1155/2019/5219471

  13. Zhang, K., Wu, Q., Liu, A., Meng, X.: Can deep learning identify tomato leaf disease? Adv. Multimed. 2018, 1–10 (2018). https://doi.org/10.1155/2018/6710865

  14. Prasad, S., Kumar, P., Hazra, R., Kumar, A.: Plant leaf disease detection using gabor wavelet transform. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Nanda, P.K. (eds.) SEMCCO 2012. LNCS, vol. 7677, pp. 372–379. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35380-2_44

    Chapter  Google Scholar 

  15. Fang, T., Chen, P., Zhang, J., Wang, B.: Identification of apple leaf diseases based on convolutional neural network. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2019. LNCS, vol. 11643, pp. 553–564. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26763-6_53

    Chapter  Google Scholar 

  16. Hang, J., Zhang, D., Chen, P., Zhang, J., Wang, B.: Identification of apple tree trunk diseases based on improved convolutional neural network with fused loss functions. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2019. LNCS, vol. 11643, pp. 274–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26763-6_26

    Chapter  Google Scholar 

  17. Fuentes, A., Yoon, S., Kim, S., Park, D.: A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17(9), 2022 (2017). https://doi.org/10.3390/s17092022

  18. Shijie, J., Peiyi, J., Siping, H., sLiu Haibo: Automatic detection of tomato diseases and pests based on leaf images. In: 2017 Chinese Automation Congress (CAC). IEEE, October 2017. https://doi.org/10.1109/cac.2017.8243388

  19. Suryawati, E., Sustika, R., Yuwana, R.S., Subekti, A., Pardede, H.F.: Deep structured convolutional neural network for tomato diseases detection. In: 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE, October 2018. https://doi.org/10.1109/icacsis.2018.8618169

  20. Durmus, H., Gunes, E.O., Kirci, M.: Disease detection on the leaves of the tomato plants by using deep learning. In: 2017 6th International Conference on Agro-Geoinformatics. IEEE, August 2017. https://doi.org/10.1109/Agro-Geoinformatics.2017.8047016

  21. Schor, N., Bechar, A., Ignat, T., Dombrovsky, A., Elad, Y., Berman, S.: Robotic disease detection in greenhouses: combined detection of powdery mildew and tomato spotted wilt virus. IEEE Robot. Autom. Lett. 1(1), 354–360 (2016). https://doi.org/10.1109/lra.2016.2518214

  22. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing using MATLAB. Pearson Education India, London (2004)

    Google Scholar 

  23. Sonka, M., Hlavac, V., Boyle, R.: Image Processing. Analysis and Machine Vision. Springer, Heidelberg (1993). https://doi.org/10.1007/978-1-4899-3216-7

    Book  Google Scholar 

  24. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973). https://doi.org/10.1109/tsmc.1973.4309314

    Article  Google Scholar 

  25. He, D.C., Wang, L.: Texture unit, texture spectrum and texture analysis. In: 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium. IEEE. https://doi.org/10.1109/igarss.1989.575836

  26. Wang, L., He, D.C.: Texture classification using texture spectrum. Pattern Recogn. 23(8), 905–910 (1990). https://doi.org/10.1016/0031-3203(90)90135-8

  27. Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theor. 8(2), 179–187 (1962). https://doi.org/10.1109/tit.1962.1057692

  28. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  29. Vapnik, V.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999). https://doi.org/10.1109/72.788640

    Article  Google Scholar 

  30. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0

  31. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers (1995)

    Google Scholar 

  32. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991). https://doi.org/10.1007/bf00153759

  33. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto García Amaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amaro, E.G., Canales, J.C., Cabrera, J.E., Castilla, J.S.R., Lamont, F.G. (2020). Identification of Diseases and Pests in Tomato Plants Through Artificial Vision. In: Huang, DS., Premaratne, P. (eds) Intelligent Computing Methodologies. ICIC 2020. Lecture Notes in Computer Science(), vol 12465. Springer, Cham. https://doi.org/10.1007/978-3-030-60796-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60796-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60795-1

  • Online ISBN: 978-3-030-60796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics