Skip to main content

Shallow Neural Network for Biometrics from the ECG-WATCH

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Abstract

Applications such as surveillance, banking and healthcare deal with sensitive data whose confidentiality and integrity depends on accurate human recognition. In this sense, the crucial mechanism for performing an effective access control is authentication, which unequivocally yields user identity. In 2018, just in North America, around 445K identity thefts have been denounced. The most adopted strategy for automatic identity recognition uses a secret for encrypting and decrypting the authentication information. This approach works very well until the secret is kept safe. Electrocardiograms (ECGs) can be exploited for biometric purposes because both the physiological and geometrical differences in each human heart correspond to uniqueness in the ECG morphology. Compared with classical biometric techniques, e.g. fingerprints, ECG-based methods can definitely be considered a more reliable and safer way for user authentication due to ECG inherent robustness to circumvention, obfuscation and replay attacks. In this paper, the ECG WATCH, a non-expensive wristwatch for recording ECGs anytime, anywhere, in just 10 s, is proposed for user authentication. The ECG WATCH acquisitions have been used to train a shallow neural network, which has reached a 99% classification accuracy and 100% intruder recognition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun. Mag. 32(9), 40–48 (1994)

    Article  Google Scholar 

  2. Krawczyk, S., Jain, A.K.: Securing electronic medical records using biometric authentication. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 1110–1119. Springer, Heidelberg (2005). https://doi.org/10.1007/11527923_115

    Chapter  Google Scholar 

  3. Gallo, V.: Performance assessment in fingerprinting and multi component quantitative NMR analyses. Anal. Chem. 87(13), 6709–6717 (2015)

    Article  Google Scholar 

  4. Bevilacqua, V., et al.: Retinal fundus biometric analysis for personal identifications. In: Huang, D.-S., Wunsch, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 1229–1237. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85984-0_147

    Chapter  Google Scholar 

  5. Jain, A.K., Arun, R., Salil, P.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)

    Article  Google Scholar 

  6. Riera, A.: STARFAST: a wireless wearable EEG/ECG biometric system based on the ENOBIO sensor. In: Proceedings of the International Workshop on Wearable Micro and Nanosystems for Personalised Health (2008)

    Google Scholar 

  7. Hu, J.F., Mu, Z.D.: EEG authentication system based on auto-regression coefficients. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO). IEEE (2016)

    Google Scholar 

  8. Lee, A., Younghyun, K.: Photoplethysmography as a form of biometric authentication. In: 2015 IEEE SENSORS. IEEE (2015)

    Google Scholar 

  9. Biel, L.: ECG analysis: a new approach in human identification. IEEE Trans. Instrum. Meas. 50(3), 808–812 (2001)

    Article  Google Scholar 

  10. Agrafioti, F.: Heart biometrics: theory, methods and applications. In: Biometrics, Shanghai, China, pp. 199–216. InTech (2011)

    Google Scholar 

  11. Wang, Y.J.: Analysis of human electrocardiogram for biometric recognition. EURASIP J. Adv. Sig. Process. 2008(1), 148658 (2007)

    Google Scholar 

  12. Condon, A., Grace, W.: ECG biometrics: the heart of data-driven disruption? Biom. Technol. Today 2018(1), 7–9 (2018)

    Google Scholar 

  13. Dimauro, G.: Assessment of speech intelligibility in Parkinson’s disease using a speech-to-text system. IEEE Access 5, 22199–22208 (2017)

    Google Scholar 

  14. Ferrero, R.: Ubiquitous fridge with natural language interaction. In: 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA). IEEE (2019)

    Google Scholar 

  15. Bevilacqua, V.: A new tool to support diagnosis of neurological disorders by means of facial expressions. In: 2011 IEEE International Symposium on Medical Measurements and Applications. IEEE (2011)

    Google Scholar 

  16. Irvine, J.M.: A new biometric: human identification from circulatory function. In: Joint Statistical Meetings of the American Statistical Association, San Francisco (2003)

    Google Scholar 

  17. Israel, S.A.: ECG to identify individuals. Pattern Recogn. 38(1), 133–142 (2005)

    Google Scholar 

  18. Zhang, Z.M., Wei, D.M.: A new ECG identification method using Bayes’ teorem. In: TENCON 2006–2006 IEEE Region 10 Conference. IEEE (2006)

    Google Scholar 

  19. Bevilacqua, V.: Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression. BMC Bioinform. 13(7), 1–15 (2012)

    Google Scholar 

  20. Hejazi, M.: ECG biometric authentication based on non-fiducial approach using kernel methods. Digit. Sig. Process. 52, 72–86 (2016)

    Google Scholar 

  21. Camara, C., Peris-Lopez, P., Tapiador, J.E.: Human identification using compressed ECG signals. J. Med. Syst. 39(11), 1–10 (2015). https://doi.org/10.1007/s10916-015-0323-2

    Article  Google Scholar 

  22. Zhang, Q.X., Zhou, D., Xuan, Z.: HeartID: a multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access 5, 11805–11816 (2017)

    Google Scholar 

  23. Bassiouni, M.: A machine learning technique for person identification using ECG signals. Int. J. Appl. Phys. 1, 37–41 (2016)

    Google Scholar 

  24. Hejazi, M.: Non-fiducial based ECG biometric authentication using one-class support vector machine. In: 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). IEEE (2017)

    Google Scholar 

  25. Tan, R., Marek, P.: Toward improving electrocardiogram (ECG) biometric verification using mobile sensors: a two-stage classifier approach. Sensors 17(2), 410 (2017)

    Google Scholar 

  26. Silva, H., Gamboa, H., Fred, A.: One lead ECG based personal identification with feature subspace ensembles. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 770–783. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73499-4_58

    Chapter  Google Scholar 

  27. Sriram, J.C.: Activity-aware ECG-based patient authentication for remote health monitoring. In: Proceedings of the 2009 International Conference on Multimodal Interfaces (2009)

    Google Scholar 

  28. IHS Markit Predictions for 2017 - Electronic Access Control. https://technology.informa.com/588015/electronic-access-control-ihs-markit-pre%ADdictions-for-2017. Accessed 27 May 2020

  29. Pasero, E., Eugenio, B., Federico, C.: Intruder recognition using ECG signal. In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE (2015)

    Google Scholar 

  30. Randazzo, V., Jacopo, F., Eros, P.: ECG WATCH: a real time wireless wearable ECG. In: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE (2019)

    Google Scholar 

  31. Randazzo, V., Eros, P., Silvio, N.: VITAL-ECG: a portable wearable hospital. In: 2018 IEEE Sensors Applications Symposium (SAS). IEEE (2018)

    Google Scholar 

  32. Einthoven’s, T. (2020). https://medical-dictionary.thefreedictionary.com/Einthoven%27s+triangle

  33. Randazzo, V., Jacopo, F., Eros, P.: A wearable smart device to monitor multiple vital parameters—VITAL ECG. Electronics 9(2), 300 (2020)

    Google Scholar 

  34. Ferretti, J., Randazzo, V., Cirrincione, G., Pasero, E.: 1-D convolutional neural network for ECG arrhythmia classification. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Progresses in Artificial Intelligence and Neural Systems. SIST, vol. 184, pp. 269–279. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5093-5_25

    Chapter  Google Scholar 

  35. Bevilacqua, V., Mastronardi, G., Menolascina, F., Pannarale, P., Pedone, A.: A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: the breast cancer classification problem. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, pp. 1958–1965 (2006). https://doi.org/10.1109/ijcnn.2006.246940

  36. Randazzo, V., Cirrincione, G., Ciravegna, G., Pasero, E.: Nonstationary topological learning with bridges and convex polytopes: the G-EXIN neural network. In: 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, pp. 1–6 (2018). https://doi.org/10.1109/ijcnn.2018.8489186

  37. Cirrincione, G.: The GH-EXIN neural network for hierarchical clustering. Neural Networks 121, 57–73 (2020)

    Google Scholar 

  38. Cirrincione, G., Randazzo, V., Kumar, R.R., Cirrincione, M., Pasero, E.: Growing curvilinear component analysis (GCCA) for stator fault detection in induction machines. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Neural Approaches to Dynamics of Signal Exchanges. SIST, vol. 151, pp. 235–244. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8950-4_22

    Chapter  MATH  Google Scholar 

  39. Kumar, R.R., Randazzo, V., Cirrincione, G., Cirrincione, M., Pasero, E.: Analysis of stator faults in induction machines using growing curvilinear component analysis. In: 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, pp. 1–6 (2017). https://doi.org/10.1109/icems.2017.8056240

  40. Cirrincione, G., Randazzo, V., Pasero, E.: Growing curvilinear component analysis (GCCA) for dimensionality reduction of nonstationary data. In: Esposito, A., Faudez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Multidisciplinary Approaches to Neural Computing. SIST, vol. 69, pp. 151–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56904-8_15

    Chapter  MATH  Google Scholar 

  41. Cirrincione, G., Hérault, J., Randazzo, V.: The on-line curvilinear component analysis (onCCA) for real-time data reduction. In: 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, pp. 1–8 (2015). https://doi.org/10.1109/ijcnn.2015.7280318

  42. Cirrincione, G., Vincenzo, R., Eros, P.: The growing curvilinear component analysis (GCCA) neural network. Neural Networks 103, 108–117 (2018)

    Google Scholar 

  43. Paviglianiti, A., Randazzo, V., Pasero, E., Vallan, A.: Noninvasive arterial blood pressure estimation using ABPNet and VITAL-ECG. In: 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, pp. 1–5 (2020). https://doi.org/10.1109/i2mtc43012.2020.9129361

  44. Randazzo, V., Cirrincione, G., Paviglianiti, A., Pasero, E., Morabito, F.C.: Neural feature extraction for the analysis of Parkinsonian patient handwriting. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Progresses in Artificial Intelligence and Neural Systems. SIST, vol. 184, pp. 243–253. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5093-5_23

    Chapter  Google Scholar 

  45. Paviglianiti, A., Randazzo, V., Cirrincione, G., Pasero, E.: Neural recurrent approaches to noninvasive blood pressure estimation. In: 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, pp. 1–7. IEEE (2020)

    Google Scholar 

  46. Cirrincione, G., Randazzo, V., Pasero, E.: A neural based comparative analysis for feature extraction from ECG signals. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Neural Approaches to Dynamics of Signal Exchanges. SIST, vol. 151, pp. 247–256. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8950-4_23

    Chapter  Google Scholar 

  47. Ferretti, J.: Towards uncovering feature extraction from temporal signals in deep CNN: the ECG case study. In: 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, pp. 1–7. IEEE (2020)

    Google Scholar 

  48. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)

    Google Scholar 

  49. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  50. Natarajan, A., Kevin, S.X., Brian, E.: Detecting divisions of the autonomic nervous system using wearables. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Randazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Randazzo, V., Cirrincione, G., Pasero, E. (2020). Shallow Neural Network for Biometrics from the ECG-WATCH. In: Huang, DS., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60799-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60798-2

  • Online ISBN: 978-3-030-60799-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics