Skip to main content

Predicting Protein-Protein Interactions from Protein Sequence Information Using Dual-Tree Complex Wavelet Transform

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

  • 837 Accesses

Abstract

Protein-protein interactions (PPIs) play major roles in most biological processes. Although a number of high-throughput technologies have been established for generating PPIs, it still has unavoidable problems such as time-consuming and labor intensive. In this paper, we develop a novel computational method for predicting PPIs by combining dual-tree complex wavelet transform (DTCWT) on substitution matrix representation (SMR) and weighted sparse representation-based classifier (WSRC). When predicting PPIs of Yeast and Human datasets, the proposed method obtained remarkable results with average accuracies as high as 97.12% and 97.56%, respectively. The performance of the proposed method is obviously better than the existing methods. Furthermore, we compare it with the superior support vector machine (SVM) classifier for further evaluating the prediction performance of our method. The promising results illustrate that our method is robust and stable for predicting PPIs, and it is anticipated that it would be a useful tool to predict PPIs in a large-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishihara, T., Nishikawa, J., Kanayama, T., Dakeyama, F., Saito, K., Imagawa, M., et al.: Estrogenic activities of 517 chemicals by yeast two-hybrid assay. J. Health Sci. 46, 282–298 (2000)

    Article  Google Scholar 

  2. Sato, T., Hanada, M., Bodrug, S., et al.: Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc. Natl. Acad. Sci. 91, 9238–9242 (1994)

    Article  Google Scholar 

  3. Puig, O., Caspary, F., Rigaut, G., et al.: The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001)

    Article  Google Scholar 

  4. Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.-L., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)

    Article  Google Scholar 

  5. You, Z.H., Zhou, M.C., Luo, X., Li, S.: Highly efficient framework for predicting interactions between protein. IEEE Trans. Cybernet. 47, 731–743 (2016)

    Article  Google Scholar 

  6. Wang, L., et al.: Using two-dimensional principal component analysis and rotation forest for prediction of protein-protein interactions. Scientific Reports 8, 1–10 (2018)

    Article  Google Scholar 

  7. Wang, L., You, Z.H., Xia, S.X., Liu, F., Chen, X., Yan, X., Zhou, Y.: Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. J. Theor. Biol. 418, 105–110 (2017)

    Article  MathSciNet  Google Scholar 

  8. Li, Z.W., et al.: Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Oncotarget 8(14), 23638 (2017)

    Article  Google Scholar 

  9. You, Z.H., Li, X., Chan, K.C.C.: An Improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers. Neurocomputing 228, 277–282 (2017)

    Article  Google Scholar 

  10. Wang, L., et al.: An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple sequences. Oncotarget 8, 5149 (2017)

    Article  Google Scholar 

  11. Wang, Y.B., et al.: Predicting protein-protein interactions from protein sequences by stacked sparse auto-encoder deep neural network. Molecular BioSyst. 13, 1336–1344 (2017)

    Article  Google Scholar 

  12. An, J.Y., You, Z.H., Chen, X., Huang, D.S., Yan, G.Y.: Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. Molecular BioSyst. 12, 3702–3710 (2016)

    Article  Google Scholar 

  13. Huang, Y.A., et al.: Construction of reliable protein-protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation. Neurocomputing 218, 131–138 (2016)

    Article  Google Scholar 

  14. An, J.Y., Meng, F.R., You, Z.H., Chen, X.: Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. Protein Sci. 25, 1825–1833 (2016)

    Article  Google Scholar 

  15. You, Z.H., Chan, K.C.C.: Prediction of protein-protein interactions from primary protein sequence using random forest model with a novel multi-scale local feature representation. PLoS ONE 10, e0131091 (2015)

    Article  Google Scholar 

  16. You, Z.H., Zhu, L., Zheng, C.H., Yu, H.J., Deng, S.P., Ji, Z.: Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. BMC Bioinform. 15(15), s9 (2014)

    Article  Google Scholar 

  17. Li, J., Shi X., You, Z.H., Yi, H.C., Chen, Z., Lin, Q., et al.: Using weighted extreme learning machine combined with scale-invariant feature transform to predict protein-protein interactions from protein evolutionary information. IEEE/ACM Trans. Comput. Biol. Bioinform. (2020)

    Google Scholar 

  18. An, J.-Y., You, Z.H., Zhou, Y., Wang, D.F.: Sequence-based prediction of protein-protein interactions using gray wolf optimizer-based relevance vector machine. Evol. Bioinform. 15, 1176934319844522 (2019)

    Google Scholar 

  19. Zhu, H.J., You, Z.H., Shi, W.L., Xu, S.K., Jiang, T.H., Zhuang, L.H.: Improved prediction of protein-protein interactions using descriptors derived from PSSM via Gray Level Co-Occurrence Matrix. IEEE Access 7, 49456–49465 (2019)

    Article  Google Scholar 

  20. You, Z.H., Huang, W.Z., Zhang, S., Huang, Y.A., Yu, C.Q., Li, L.P.: An efficient ensemble learning approach for predicting protein-protein interactions by integrating protein primary sequence and evolutionary information. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 809–817 (2018)

    Article  Google Scholar 

  21. Huang, Y.A., You, Z.H., Chen, X., Chan, K., Luo, X.: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinform. 17, 184 (2016)

    Article  Google Scholar 

  22. Wen, Y.T., Lei, H.J., You, Z.H., Lei, B.Y., Chen, X., Li, L.P.: Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network. J. Theor. Biol. 430, 9–20 (2017)

    Article  Google Scholar 

  23. Wong, L., You, Z.-H., Li, S., Huang, Y.-A., Liu, G.: Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor. In: Huang, D.-S., Han, K. (eds.) ICIC 2015. LNCS (LNAI), vol. 9227, pp. 713–720. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22053-6_75

    Chapter  Google Scholar 

  24. Huang, Q.Y., You, Z.H., Li, S., Zhu, Z.X.: Using Chou’s amphiphilic pseudo-amino acid composition and extreme learning machine for prediction of protein-protein interactions. In: IEEE, pp. 2952–2956 (2014)

    Google Scholar 

  25. You, Z.H., Yu, J.Z., Zhu, L., Li, S., Wen, Z.K.: A MapReduce based parallel SVM for large-scale predicting protein–protein interactions. Neurocomputing 145, 37–43 (2014)

    Article  Google Scholar 

  26. Yu, X., Zheng, X., Liu, T., Dou, Y., Wang, J.: Predicting subcellular location of apoptosis proteins with pseudo amino acid composition: approach from amino acid substitution matrix and auto covariance transformation. Amino Acids 42, 1619–1625 (2012)

    Article  Google Scholar 

  27. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22, 123–151 (2005)

    Article  Google Scholar 

  28. Kingsbury, N.: Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmon. Anal. 10, 234–253 (2001)

    Article  MathSciNet  Google Scholar 

  29. Barri, A., Dooms, A., Schelkens, P.: The near shift-invariance of the dual-tree complex wavelet transform revisited. J. Math. Anal. Appl. 389, 1303–1314 (2012)

    Article  MathSciNet  Google Scholar 

  30. Yin, J., Liu, Z., Jin, Z., Yang, W.: Kernel sparse representation based classification. Neurocomputing 77, 120–128 (2012)

    Article  Google Scholar 

  31. Gao, Y., Ma, J., Yuille, A.L.: Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. IEEE Trans. Image Process. 26, 2545–2560 (2017)

    Article  MathSciNet  Google Scholar 

  32. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52, 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  33. Chen, S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  34. Liu, C.H.W.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11, 467–476 (2002)

    Article  Google Scholar 

  35. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: IEEE, pp. 3360–3367 (2010)

    Google Scholar 

  36. Lu, C.Y., Min, H., Gui, J., Zhu, L., Lei, Y.K.: Face recognition via weighted sparse representation. J. Vis. Commun. Image Rep. 24, 111–116 (2013)

    Article  Google Scholar 

  37. Zhang, P.: Model selection via multifold cross validation. Ann. Stat. 21, 299–313 (1993)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China under Grants 61873212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J., You, ZH., Yu, CQ., Li, LP., Zhan, Xk. (2020). Predicting Protein-Protein Interactions from Protein Sequence Information Using Dual-Tree Complex Wavelet Transform. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics