Skip to main content

An Efficient Computational Method to Predict Drug-Target Interactions Utilizing Structural Perturbation Method

  • Conference paper
  • First Online:
  • 897 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Abstract

Accurately and quickly identifying potential drug candidates for therapeutic targets (i.e., drug-target interactions, DTIs) is a basic step in the early drug discovery process. However, the experimental determination of drug-target interactions is expensive and time-consuming. Therefore, a continuous demand that the effective calculation algorithm is developed with a more accurate prediction of drug-target interactions. Some algorithms have been designed to infer new interactions but ignored the link generation mechanism in the DTI network, and the missing information can be completed by generalizing the observed DTI network structure according to some consistency rules. We propose a calculation model named SPDTI, which is based on the structural perturbation method and uses the explicit and implicit relations of the drug-target adjacency to predict novel DTIs. In our framework, we first construct the implicit relationship between nodes of the same type through the display relationship of the DTI adjacency matrix. Then a bilayer network is designed to integrate these two relationships, and finally, the structure perturbation method is used to predict the potential interactions between drugs and targets. To evaluate the performance of SPDTI, we carried out a lot of experiments on four benchmark datasets. The experimental results show that SPM can be used as an effective computing method to improve the identification accuracy of drug-target interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Olayan, R.S., Ashoor, H., Bajic, V.B.: DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches. Bioinformatics 34(7), 1164–1173 (2017)

    Article  Google Scholar 

  2. Gao, M.-M., Cui, Z., Gao, Y.-L., Liu, J.-X., Zheng, C.-H.: Dual-network sparse graph regularized matrix factorization for predicting miRNA-disease associations. Mol. Omics 15(2), 130–137 (2019)

    Article  Google Scholar 

  3. Yin, M.-M., Cui, Z., Gao, M.-M., Liu, J.-X., Gao, Y.-L.: LWPCMF: logistic weighted profile-based collaborative matrix factorization for predicting MiRNA-disease associations. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2019)

    Google Scholar 

  4. Cui, Z., Liu, J.-X., Gao, Y.-L., Zheng, C.-H., Wang, J.: RCMF: a robust collaborative matrix factorization method to predict miRNA-disease associations. BMC Bioinform. 20(S25), 686 (2019)

    Article  Google Scholar 

  5. Gao, Y.-L., Cui, Z., Liu, J.-X., Wang, J., Zheng, C.-H.: NPCMF: nearest profile-based collaborative matrix factorization method for predicting miRNA-disease associations. BMC Bioinform. 20, 353 (2019)

    Article  Google Scholar 

  6. Bowes, J., et al.: Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11(12), 909–922 (2012)

    Article  Google Scholar 

  7. Vilar, S., Hripcsak, G.: The role of drug profiles as similarity metrics: applications to repurposing, adverse effects detection and drug-drug interactions. Brief. Bioinform. 18, 670–681 (2016)

    Google Scholar 

  8. Yuan, Q., et al.: DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics 32(12), i18–i30 (2016)

    Article  Google Scholar 

  9. Bleakley, K., Yamanishi, Y.: Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)

    Article  Google Scholar 

  10. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  11. Mei, J.-P., Kwoh, C.-K., Yang, P., Li, X.-L., Zheng, J.: Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)

    Article  Google Scholar 

  12. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(1), 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Xia, Z., Wu, L.Y., Zhou, X., Wong, S.T.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(Suppl. 2), S6 (2010)

    Article  Google Scholar 

  14. Wang, W., et al.: Drug target predictions based on heterogeneous graph inference. In: Pacific Symposium on Biocomputing, pp. 53–64 (2013)

    Google Scholar 

  15. Wang, W., Yang, S., Zhang, X., Li, J.: Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30(20), 2923–2930 (2014)

    Article  Google Scholar 

  16. van Laarhoven, T., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS ONE. 8(6), e66952 (2013)

    Article  Google Scholar 

  17. Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: KDD’13: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033 (2013)

    Google Scholar 

  18. Liu, Y., et al.: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput. Biol. 12, e1004760 (2016)

    Article  Google Scholar 

  19. Hao, M., et al.: Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Sci. Rep. 7, 40376 (2017)

    Article  Google Scholar 

  20. Wan, F., Hong, L., Xiao, A., Jiang, T., Zeng, J.: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions. Bioinformatics 35(1), 104–111 (2019)

    Article  Google Scholar 

  21. Mohamed, S.K., Nováček, V., Nounu, A.: Discovering protein drug targets using knowledge graph embeddings. Bioinformatics 36(2), 603–610 (2020)

    Google Scholar 

  22. Xu, X., Liu, B., Wu, J., et al.: Link prediction in complex networks via matrix perturbation and decomposition. Sci. Rep. 7(1), 14724 (2017)

    Article  Google Scholar 

  23. Lü, L., et al.: Toward link predictability of complex networks. Proc. Natl. Acad. Sci. 112, 2325–2330 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  Google Scholar 

  25. Ba-Alawi, W., et al.: DASPfind: new efficient method to predict drug-target interactions. Cheminformatics 8(1), 15 (2016)

    Article  Google Scholar 

  26. Daminelli, S., et al.: Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks. New J. Phys. 17(11), 113037 (2015)

    Article  Google Scholar 

  27. Wishart, D.S., et al.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901–D906 (2008)

    Article  Google Scholar 

  28. Gunther, S., et al.: SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36, D919–D922 (2008)

    Article  Google Scholar 

  29. Schomburg, I.: BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 32, D431–D433 (2004)

    Article  Google Scholar 

  30. Kanehisa, M., et al.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006)

    Article  Google Scholar 

  31. Chen, X., Jiao, P., Yu, Y., Li, X., Tang, M.: Toward link predictability of bipartite networks based on structural enhancement and structural perturbation. Physica A: Stat. Mech. Appl. 530(121072), 0378–4371 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant No. 61972141) and Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinguo Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, X., Liu, F., Ding, L., Wang, X., Li, J., Yuan, Y. (2020). An Efficient Computational Method to Predict Drug-Target Interactions Utilizing Structural Perturbation Method. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics