Skip to main content

Identification of Human LncRNA-Disease Association by Fast Kernel Learning-Based Kronecker Regularized Least Squares

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Abstract

As the function of lncRNA is gradually understood, they have been found regulating the expression of target genes at the post-transcriptional level, and their abnormal functions may lead to so many diseases. Then, identifying the lncRNA-disease associations (LDA) can help to better understand its pathogenesis, promote the search for biomarkers of disease diagnosis, and effectively prevent disease. To break through the limitations of the existing computational models, we put forward a novel computational method of lncRNA-disease association identification by employing Fast Kernel Learning with Kronecker Regularized Least Squares (FKL-KronRLS-LDA). This model first extracts three different similarity kernels in disease and lncRNA space respectively. Next, it fuses these distinct kernels into an integrated kernel with the optimized combining weightings indicating their importance. It then combines lncRNA kernel and disease kernel into one larger kernel by Kronecker product kernel. Finally, it adopts the regularization least squares to identify potential associations. In experiments of Leave one out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), FKL-KronRLS-LDA respectively obtains an AUC of 0.917 and 0.856, which outperform other excellent computational models. Furthermore, in the case studies, 9, 8 and 8 out of top 10 identified lncRNAs are successfully confirmed by recent published literature for lung cancer, breast cancer and gastric cancer, respectively. In a word, FKL-KronRLS-LDA can effectively identify potential lncRNA-disease associations for human beings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crick, F.H.C., Barnett, L., Brenner, S., Watts-Tobin, R.J.: General nature of the genetic code for proteins. Nature 192(4809), 1227–1232 (1961)

    Article  Google Scholar 

  2. Bian, E., Li, J., Xie, Y., Zong, G., Li, J., Zhao, B.: LncRNAs: new players in gliomas, with special emphasis on the interaction of lncRNAs With EZH2. J. Cell. Physiol. 230(3), 496–503 (2015)

    Article  Google Scholar 

  3. Liang, C., Li, Y., Luo, J.W.: A novel method to detect functional microRNA regulatory modules by bicliques merging. IEEE/ACM Trans. Comput. Biol. Bioinform. (2016)

    Google Scholar 

  4. Xiao, Q., et al.: Identifying lncRNA and mRNA co-expression modules from matched expression data in ovarian cancer. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics, Institute of Electrical and Electronics Engineers Inc., August 2018

    Google Scholar 

  5. Liu, Y., Luo, J., Ding, P.: Inferring MicroRNA targets based on restricted Boltzmann machines. IEEE J. Biomed. Heal., Informatics (2019)

    Book  Google Scholar 

  6. Luo, J., Ding, P., Liang, C., Cao, B., Chen, X.: Collective prediction of disease-associated miRNAs based on transduction learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 14, 1468–1475 (2017)

    Article  Google Scholar 

  7. Luo, J., Long, Y.: NTSHMDA: prediction of human microbe-disease association based on random walk by integrating network topological similarity. IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 1341–1351 (2018)

    Google Scholar 

  8. Sun, J., et al.: Inferring novel lncRNA-disease associations based on a random walk model of a lncRNA functional similarity network. Mol. BioSyst. 10(8), 2074–2081 (2014)

    Article  Google Scholar 

  9. Chen, X.: KATZLDA: KATZ measure for the lncRNA-disease association prediction. Sci. Rep. 5, 1–11 (2015)

    Google Scholar 

  10. Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A., Hoffman, M.M.: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf. Fusion 50(June 2018), 71–91 (2019)

    Google Scholar 

  11. Chen, X., Yan, G.Y.: Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics 29(20), 2617–2624 (2013)

    Article  Google Scholar 

  12. Lan, W., et al.: LDAP : A Web Server for lncRNA-Disease Association Prediction, vol. 33, no. October 2016, pp. 458–460 (2017)

    Google Scholar 

  13. Li, W., Wang, S., Xu, J., Mao, G., Tian, G., Yang, J.: Inferring latent disease-lncRNA associations by faster matrix completion on a heterogeneous network. Front. Genet. (2019)

    Google Scholar 

  14. Fu, G., Wang, J., Domeniconi, C., Yu, G.: Matrix factorization-based data fusion for the prediction of lncRNA-disease associations. Bioinformatics 34(9), 1529–1537 (2018)

    Article  Google Scholar 

  15. Lu, C., et al.: Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics 34(19), 3357–3364 (2018)

    Article  Google Scholar 

  16. Peng, L., Liao, B., Zhu, W., Li, Z., Li, K.: Predicting drug-target interactions with multi-information fusion. IEEE J. Biomed. Heal. Inf. (2017)

    Google Scholar 

  17. Zeng, X., et al.: Network-based prediction of drug–target interactions using an arbitrary-order proximity embedded deep forest. Bioinformatics 36, 1–8 (2020)

    Google Scholar 

  18. Ding, Y., Tang, Y., Guo, F.: Identification of protein-protein interactions via a novel matrix-based sequence representation model with amino acid contact information. Int. J. Mol. Sci. (2016)

    Google Scholar 

  19. Chen, X., Niu, Y.W., Wang, G.H., Yan, G.Y.: MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction. J. Transl. Med. 15(1), 1–14 (2017)

    Article  Google Scholar 

  20. Xie, G., Meng, T., Luo, Y., Liu, Z.: SKF-LDA: similarity kernel fusion for predicting lncRNA-disease association. Mol. Ther. Nucl. Acids 18(December), 45–55 (2019)

    Article  Google Scholar 

  21. Kuang, Q., et al.: A kernel matrix dimension reduction method for predicting drug-target interaction. Chemom. Intell. Lab. Syst. 162(November 2015), 104–110 (2017)

    Google Scholar 

  22. Shen, C., Ding, Y., Tang, J., Jiang, L., Guo, F.: LPI-KTASLP: prediction of LncRNA-protein interaction by semi-supervised link learning with multivariate information. IEEE Access 7, 13486–13496 (2019)

    Article  Google Scholar 

  23. Hu, J., Li, Y., Zhang, M., Yang, X., Shen, H., Yu, D.: Predicting Protein-DNA Binding Residues by Weightedly Combining Sequence-Based Features and Boosting Multiple SVMs, vol. 14, no. 6, pp. 1389–1398 (2017)

    Google Scholar 

  24. He, J., Chang, S.F., Xie, L.: Fast kernel learning for spatial pyramid matching. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2008)

    Google Scholar 

  25. Ding, H., Takigawa, I., Mamitsuka, H., Zhu, S.: Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief. Bioinform. (2013)

    Google Scholar 

  26. Bao, Z., Yang, Z., Huang, Z., Zhou, Y., Cui, Q., Dong, D.: LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucl. Acids Res. 47(D1), D1034–D1037 (2019)

    Article  Google Scholar 

  27. Wang, D., Wang, J., Lu, M., Song, F., Cui, Q.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13), 1644–1650 (2010)

    Article  Google Scholar 

  28. Package, T., Disease, T., Semantic, O., Annotationdbi, I.: Package. In: DOSE (2019)

    Google Scholar 

  29. Piñero, J., et al.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucl. Acids Res. 45(D1), D833–D839 (2017)

    Article  Google Scholar 

  30. Durinck, S., et al.: BioMart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005)

    Article  Google Scholar 

  31. Aken, B.L., et al.: The ensemble gene annotation system. In: Database (Oxford) (2016)

    Google Scholar 

  32. Mott, R.: Smith-Waterman algorithm. In: Encyclopedia of Life Sciences (2005

    Google Scholar 

  33. Yu, G., Wang, L.G., Yan, G.R., He, Q.Y.: DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31, 608–609 (2015)

    Google Scholar 

  34. van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27, 3036–3043 (2011)

    Google Scholar 

  35. Shen, C., Ding, Y., Tang, J., Guo, F.: Multivariate information fusion with fast kernel learning to Kernel Ridge Regression in predicting lncRNA-protein interactions. Front. Genet. 10(Jan), 1–12 (2019)

    Google Scholar 

  36. Jiang, L., Xiao, L., Ding, Y., Tang, J., Guo, F.: FKL-Spa-LapRLS: an accurate method for identifying human microRNA-disease association. BMC Genom. 19(Suppl 10) (2018)

    Google Scholar 

  37. Kuang, Q., et al.: A kernel matrix dimension reduction method for predicting drug-target interaction. Chemom. Intell. Lab. Syst. 162(November 2016), 104–110 (2017)

    Google Scholar 

  38. Cui, T., et al.: MNDR v2.0: an updated resource of ncRNA-disease associations in mammals. Nucl. Acids Res. (2018)

    Google Scholar 

  39. Gao, Y., et al.: Lnc2Cancer v2.0: updated database of experimentally supported long non-coding RNAs in human cancers. Nucleic Acids Res. 47(D1), D1028–D1033 (2019)

    Article  Google Scholar 

  40. Jia, K., Gao, Y., Shi, J., Zhou, Y., Zhou, Y., Cui, Q.: Annotation and curation of the causality information in LncRNADisease. In: Database (Oxford) (2020)

    Google Scholar 

  41. Pan, G.F., Zhou, X.F., Zhao, J.P.: Correlation between expression of long non-coding RNA ZXF1 and prognosis of lung adenocarcinoma and its potential molecular mechanism. Zhonghua Zhong Liu Za Zhi 39(2), 102–108 (2017)

    Google Scholar 

  42. Pan, Y., et al.: The emerging roles of long noncoding RNA ROR (lincRNA-ROR) and its possible mechanisms in human cancers. In: Cellular Physiology and Biochemistry, vol. 40, no. 1–2, pp. 219–229. S. Karger AG, November 2016

    Google Scholar 

  43. Fan, S., et al.: Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation, migration, and invasion in breast cancer. Biomed. Pharmacother. 95, 1636–1643 (2017)

    Article  Google Scholar 

  44. Guo, X., et al.: GAS5 inhibits gastric cancer cell proliferation partly by modulating CDK6. Oncol. Res. Treat. 38(7–8), 362–366 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Nature Science Foundation of China (Grant Nos. 61472467 and 61672011), and the National Key Research and Development Program (Grant Nos. 2017YFC1311003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Lin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Wang, SL., Xu, J., Yang, J. (2020). Identification of Human LncRNA-Disease Association by Fast Kernel Learning-Based Kronecker Regularized Least Squares. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics