Skip to main content

A Unified Deep Biological Sequence Representation Learning with Pretrained Encoder-Decoder Model

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

Abstract

Machine learning methods are increasingly being applied to model and predict biomolecular interactions, while efficient feature representation plays a vital role. To this end, a unified biological sequence deep representation learning framework BioSeq2vec is proposed to extract discriminative features of any type of biological sequence. For arbitrary-length sequence input, the BioSeq2vec produces fixed-length efficient feature representation, which can be applied to various learning models. The performance of BioSeq2vec is evaluated on lncRNA-protein interaction prediction tasks. Experimental results reveal the superior performance of BioSeq2vec in biological sequence feature representation and broad prospects in various genome informatics and computational biology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crick, F.: Central dogma of molecular biology. Nature 227(5258), 561–563 (1970)

    Article  Google Scholar 

  2. Chen, X., Yan, C.C., Zhang, X., You, Z.H.: Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 18(4), 558 (2016)

    Google Scholar 

  3. Li, J., Shi, X., You, Z., Chen, Z., Lin, Q., Fang, M.: Using weighted extreme learning machine combined with scale-invariant feature transform to predict protein-protein interactions from protein evolutionary information, pp. 527–532

    Google Scholar 

  4. Luo, X., et al.: Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS data. IEEE Trans. Cybern. 48(4), 1216–1228 (2018)

    Article  Google Scholar 

  5. Wang, L., et al.: An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft. Comput. 22(10), 3373–3381 (2017). https://doi.org/10.1007/s00500-017-2582-y

    Article  Google Scholar 

  6. Wang, Y., et al.: Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine. Complexity 2018 (2018)

    Google Scholar 

  7. Li, S., Zhou, M., Luo, X., You, Z.-H.: Distributed winner-take-all in dynamic networks. IEEE Trans. Autom. Control 62(2), 577–589 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, Y.-A., Chan, K.C., You, Z.-H.: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34(5), 812–819 (2017)

    Article  Google Scholar 

  9. Hu, L., Hu, P., Yuan, X., Luo, X., You, Z.: Incorporating the coevolving information of substrates in predicting HIV-1 protease cleavage sites. IEEE/ACM Trans. Comput. Biol. Bioinf 1 (2019)

    Google Scholar 

  10. Li, J.-Q., You, Z.-H., Li, X., Ming, Z., Chen, X.: PSPEL: in silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 14(5), 1165–1172 (2017)

    Article  Google Scholar 

  11. Yi, H.-C., You, Z.-H., Huang, D.-S., Guo, Z.-H., Chan, K.C.C., Li, Y.: Learning representations to predict intermolecular interactions on large-scale heterogeneous molecular association network. iScience 23(7), 101261 (2020)

    Article  Google Scholar 

  12. Chen, X., Xie, D., Zhao, Q., You, Z.H.: MicroRNAs and complex diseases: from experimental results to computational models. Brief. Bioinf. 20, 515–539 (2017)

    Google Scholar 

  13. Luo, X., Zhou, M., Li, S., You, Z., Xia, Y., Zhu, Q.: A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 579–592 (2016)

    Article  MathSciNet  Google Scholar 

  14. You, Z.-H., Yin, Z., Han, K., Huang, D.-S., Zhou, X.: A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinf. 11(1), 343 (2010)

    Article  Google Scholar 

  15. Chen, X., Huang, Y.-A., You, Z.-H., Yan, G.-Y., Wang, X.-S.: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33(5), 733–739 (2016)

    Google Scholar 

  16. Huang, Y.-A., You, Z.-H., Chen, X., Chan, K., Luo, X.: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinf. 17(1), 184 (2016)

    Article  Google Scholar 

  17. Wang, L., et al.: Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. J. Theor. Biol. 418, 105–110 (2017)

    Article  MathSciNet  Google Scholar 

  18. You, Z.-H., Huang, W., Zhang, S., Huang, Y.-A., Yu, C.-Q., Li, L.-P.: An efficient ensemble learning approach for predicting protein-protein interactions by integrating protein primary sequence and evolutionary information. IEEE/ACM Trans. Computat. Biol. Bioinf. 16, 809–817 (2018)

    Article  Google Scholar 

  19. You, Z.H., Zhu, L., Zheng, C.H., Yu, H.J., Deng, S.P., Ji, Z.: Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. BMC Bioinf. 15(S15), S9 (2014)

    Article  Google Scholar 

  20. You, Z.-H., Chan, K.C., Hu, P.: Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. PLoS One 10(5), e0125811 (2015)

    Article  Google Scholar 

  21. You, Z.-H., Lei, Y.-K., Gui, J., Huang, D.-S., Zhou, X.: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26(21), 2744–2751 (2010)

    Article  Google Scholar 

  22. You, Z.-H., Lei, Y.-K., Zhu, L., Xia, J., Wang, B.: Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinf. 14(Suppl 8), S10 (2013)

    Article  Google Scholar 

  23. You, Z.-H., et al.: PRMDA: personalized recommendation-based MiRNA-disease association prediction. Oncotarget 8(49), 85568 (2017)

    Article  Google Scholar 

  24. You, Z.-H., Yu, J.-Z., Zhu, L., Li, S., Wen, Z.-K.: A MapReduce based parallel SVM for large-scale predicting protein-protein interactions. Neurocomputing 145, 37–43 (2014)

    Article  Google Scholar 

  25. An, J.-Y., You, Z.-H., Zhou, Y., Wang, D.-F.: Sequence-based prediction of protein-protein interactions using gray wolf optimizer-based relevance vector machine. Evol. Bioinf. 15, 1176934319844522 (2019)

    Google Scholar 

  26. Yi, H.-C., et al.: ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation. Mol. Ther. - Nucleic Acids 17, 1–9 (2019)

    Article  Google Scholar 

  27. Yi, H.-C., et al.: Learning distributed representations of RNA and protein sequences and its application for predicting lncRNA-protein interactions. Computat. Struct. Biotechnol. J. (2019)

    Google Scholar 

  28. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinform. 18(5), 851–869 (2016)

    Google Scholar 

  29. You, Z.-H., et al.: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13(3), e1005455 (2017)

    Article  Google Scholar 

  30. You, Z.-H., Zhou, M., Luo, X., Li, S.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)

    Article  Google Scholar 

  31. Guo, Z.-H., You, Z.-H., Wang, Y.-B., Huang, D.-S., Yi, H.-C., Chen, Z.-H.: Bioentity2vec: attribute- and behavior-driven representation for predicting multi-type relationships between bioentities. GigaScience 9(6), giaa032 (2020)

    Article  Google Scholar 

  32. Guo, Z.-H., et al.: MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm. Brief. Bioinf. (2020)

    Google Scholar 

  33. Guo, Z.-H., You, Z.-H., Huang, D.-S., Yi, H.-C., Chen, Z.-H., Wang, Y.-B.: A learning based framework for diverse biomolecule relationship prediction in molecular association network. Commun. Biol. 3(1), 118 (2020)

    Article  Google Scholar 

  34. Huang, Y.-A., Hu, P., Chan, K.C.C., You, Z.-H.: Graph convolution for predicting associations between miRNA and drug resistance. Bioinformatics 36(3), 851–858 (2019)

    Google Scholar 

  35. Wong, L., Huang, Y.-A., You, Z.-H., Chen, Z.-H., Cao, M.-Y.: LNRLMI: linear neighbour representation for predicting lncRNA-miRNA interactions. J. Cell Mol. Med. 24(1), 79–87 (2020)

    Article  Google Scholar 

  36. Wang, L., You, Z.-H., Huang, Y.-A., Huang, D.-S., Chan, K.C.C.: An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network. Bioinformatics 36(13), 4038–4046 (2019)

    Article  Google Scholar 

  37. Wang, Y., You, Z.-H., Yang, S., Li, X., Jiang, T.-H., Zhou, X.: A high efficient biological language model for predicting protein-protein interactions. Cells 8(2), 122 (2019)

    Article  Google Scholar 

  38. Guo, Z.-H., You, Z.-H., Yi, H.-C.: Integrative construction and analysis of molecular association network in human cells by fusing node attribute and behavior information. Mol. Ther.-Nucleic Acids 19, 498–506 (2019)

    Article  Google Scholar 

  39. Peng, W., Chan, K.C.C., You, Z.: Large-scale prediction of drug-target interactions from deep representations, pp. 1236–1243 (2016)

    Google Scholar 

  40. Hu, P., Huang, Y., Chan, K.C.C., You, Z.: Learning multimodal networks from heterogeneous data for prediction of lncRNA-miRNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinf. 1 (2019)

    Google Scholar 

  41. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database, pp. 248–255 (2009)

    Google Scholar 

  42. Vaswani, A., et al.: Attention is all you need, pp. 5998–6008 (2017)

    Google Scholar 

  43. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  44. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  45. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks, pp. 3104–3112 (2014)

    Google Scholar 

  46. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Frankish, A., et al.: GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47(D1), D766–D773 (2019)

    Article  Google Scholar 

  49. Pan, X., Fan, Y.X., Yan, J., Shen, H.B.: IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genom. 17(1), 582 (2016)

    Article  Google Scholar 

  50. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  MathSciNet  Google Scholar 

  51. Yi, H., You, Z., Guo, Z., Huang, D., Chan, K.C.C.: Learning representation of molecules in association network for predicting intermolecular associations. IEEE/ACM Trans. Comput. Biol. Bioinf. 1 (2020)

    Google Scholar 

  52. Yi, H.-C., You, Z.-H., Huang, D.-S., Li, X., Jiang, T.-H., Li, L.-P.: A Deep learning framework for robust and accurate prediction of ncRNA-protein interactions using evolutionary information. Mol. Ther. Nucleic Acids 11, 337–344 (2018)

    Article  Google Scholar 

  53. Yi, H.-C., You, Z.-H., Wang, M.-N., Guo, Z.-H., Wang, Y.-B., Zhou, J.-R.: RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information. BMC Bioinf. 21(1), 60 (2020)

    Article  Google Scholar 

  54. Wang, L., You, Z.-H., Huang, D.-S., Zhou, F.: Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein-RNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinf. (2018)

    Google Scholar 

  55. Yi, H.-C., You, Z.-H., Guo, Z.-H.: Construction and analysis of molecular association network by combining behavior representation and node attributes. Front. Genet. 10, 1106 (2019)

    Article  Google Scholar 

  56. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  57. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  58. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting, pp. 23–37

    Google Scholar 

  59. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  60. Shen, J., et al.: Predicting protein–protein interactions based only on sequences information. Proc. Natl. Acad. Sci. 104(11), 4337–4341 (2007)

    Article  Google Scholar 

  61. Guo, Z.-H., Yi, H.-C., You, Z.-H.: Construction and comprehensive analysis of a molecular association network via lncRNA–miRNA–disease–drug–protein graph. Cells 8(8), 866 (2019)

    Article  Google Scholar 

  62. Lei, H., et al.: Protein–protein interactions prediction via multimodal deep polynomial network and regularized extreme learning machine. IEEE J. Biomed. Health Inf. 23(3), 1290–1303 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

HCY, ZHY and XRS designed, conceived the algorithm, carried out analyses, prepared the data sets, carried out experiments, and wrote the manuscript; DSH, ZHG performed and analyzed experiments and wrote the manuscript; All authors read and approved the final manuscript.

Funding

This work is supported by the National Outstanding Youth Science Foundation of NSFC, under grant 61722212, and the National Natural Science Foundation of China, under grants 61873212, 61861146002, and 61732012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yi, HC., You, ZH., Su, XR., Huang, DS., Guo, ZH. (2020). A Unified Deep Biological Sequence Representation Learning with Pretrained Encoder-Decoder Model. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics