Skip to main content

A Novel Computational Method for Predicting LncRNA-Disease Associations from Heterogeneous Information Network with SDNE Embedding Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Abstract

Recent studies have shown that lncRNAs play a critical role in numerous complex human diseases. Thus, identification of lncRNA and diseases associations can help us to understand disease pathogenesis at the molecular level and develop disease diagnostic biomarkers. In this paper, a novel computational method LDAMAN is proposed to predict potential lncRNA-disease interactions from heterogeneous information network with SDNE embedding model. Specifically, known associations among lncRNA, disease, microRNA, circular RNA, mRNA, protein, drug and microbe are integrated to construct a molecular association network and a network embedding model SDNE is employed to extract network behavior features of lncRNA and disease nodes. Finally, the XGBoost classifier is used for predicting potential lncRNA-disease associations. In the experiment, the proposed method obtained stable AUC of 92.58% using 5-fold cross validation. In summary, the experimental results demonstrate our method provides a systematic landscape and computational prediction tool for lncRNA-disease association prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lv, J., et al.: Identification and characterization of long intergenic non-coding RNAs related to mouse liver development. Mol. Genet. Genom. 289(6), 1225–1235 (2014). https://doi.org/10.1007/s00438-014-0882-9

    Article  Google Scholar 

  2. Yanofsky, C.: Establishing the triplet nature of the genetic code. Cell 128, 815–818 (2007)

    Article  Google Scholar 

  3. Core, L.J., Waterfall, J.J., Lis, J.T.: Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008)

    Article  Google Scholar 

  4. Chen, X., Yan, C.C., Zhang, X., You, Z.: Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 18, 558–576 (2016)

    Google Scholar 

  5. Chen, X., et al.: NRDTD: a database for clinically or experimentally supported non-coding RNAs and drug targets associations. Database 2017 (2017)

    Google Scholar 

  6. Huang, Y., Chen, X., You, Z., Huang, D., Chan, K.C.C.: ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7, 25902–25914 (2016)

    Article  Google Scholar 

  7. Guo, Z., You, Z., Wang, Y., Yi, H., Chen, Z.: A learning-based method for LncRNA-disease association identification combing similarity information and rotation forest. iScience 19, 786–795 (2019)

    Google Scholar 

  8. Chen, X., You, Z.-H., Yan, G.-Y., Gong, D.-W.: IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget 7, 57919 (2016)

    Article  Google Scholar 

  9. Yu, J., Ping, P., Wang, L., Kuang, L., Li, X., Wu, Z.: A novel probability model for lncRNA–disease association prediction based on the naïve bayesian classifier. Genes 9, 345 (2018)

    Article  Google Scholar 

  10. Ou-Yang, L., et al.: LncRNA-disease association prediction using two-side sparse self-representation. Front. Genet. 10, 476 (2019)

    Article  Google Scholar 

  11. You, Z., Yin, Z., Han, K., Huang, D., Zhou, X.: A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinf. 11, 343 (2010)

    Article  Google Scholar 

  12. Li, S., Zhou, M., Luo, X., You, Z.: Distributed winner-take-all in dynamic networks. IEEE Trans. Autom. Control 62, 577–589 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z., Liu, H.: BNPMDA: bipartite network projection for MiRNA–disease association prediction. Bioinformatics 34, 3178–3186 (2018)

    Article  Google Scholar 

  14. Wang, M., You, Z., Wang, L., Li, L., Zheng, K.: LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization. Neurocomputing (2020)

    Google Scholar 

  15. Ma, L., et al.: Multi-neighborhood learning for global alignment in biological networks. IEEE/ACM Trans. Comput. Biol. Bioinf. (2020)

    Google Scholar 

  16. Yang, P., Li, X., Wu, M., Kwoh, C.-K., Ng, S.-K.: Inferring gene-phenotype associations via global protein complex network propagation. PloS One 6, e21502 (2011)

    Article  Google Scholar 

  17. Sun, J., et al.: Inferring novel lncRNA–disease associations based on a random walk model of a lncRNA functional similarity network. Mol. BioSyst. 10, 2074–2081 (2014)

    Article  Google Scholar 

  18. Zhou, M., et al.: Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. Mol. BioSyst. 11, 760–769 (2015)

    Article  Google Scholar 

  19. Ding, L., Wang, M., Sun, D., Li, A.: TPGLDA: novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph. Sci. Rep. 8, 1065 (2018)

    Article  Google Scholar 

  20. Mori, T., Ngouv, H., Hayashida, M., Akutsu, T., Nacher, J.C.: ncRNA-disease association prediction based on sequence information and tripartite network. BMC Syst. Biol. 12, 37 (2018)

    Article  Google Scholar 

  21. Ping, P., Wang, L., Kuang, L., Ye, S., Iqbal, M.F.B., Pei, T.: A novel method for lncRNA-disease association prediction based on an lncRNA-disease association network. IEEE/ACM Trans. Comput. Biol. Bioinf. 16, 688–693 (2018)

    Article  Google Scholar 

  22. Sumathipala, M., Maiorino, E., Weiss, S.T., Sharma, A.: Network diffusion approach to predict lncRNA disease associations using multi-type biological networks: LION. Front. Physiol. 10, 888 (2019)

    Article  Google Scholar 

  23. Yi, H., You, Z., Guo, Z.: Construction and analysis of molecular association network by combining behavior representation and node attributes. Front. Genet. 10, 1106 (2019)

    Article  Google Scholar 

  24. Guo, Z.-H., Yi, H.-C., You, Z.-H.: Construction and comprehensive analysis of a molecular associations network via lncRNA-miRNA-disease-drug-protein graph. Cells 8, 866 (2019)

    Article  Google Scholar 

  25. Yi, H.-C., You, Z.-H., Huang, W.-Z., Guo, Z.-H., Wang, Y.-B., Cheng, Z.-H.: Construction of large-scale heterogeneous molecular association network and its application in molecular link prediction. In: Basic & Clinical Pharmacology & Toxicology, p. 5. Wiley, Hoboken (2019)

    Google Scholar 

  26. Yi, H.C., You, Z.H., Guo, Z.H., Huang, D.S., Kcc, C.: learning representation of molecules in association network for predicting intermolecular associations. IEEE/ACM Trans. Comput. Biol. Bioinf. 1 (2020)

    Google Scholar 

  27. Guo, Z., You, Z., Yi, H.: Integrative construction and analysis of molecular association network in human cells by fusing node attribute and behavior information. Mol. Ther. Nucleic Acids 19, 498–506 (2020)

    Article  Google Scholar 

  28. Guo, Z.-H., You, Z.-H., Huang, D.-S., Yi, H.-C., Chen, Z.-H., Wang, Y.-B.: A learning based framework for diverse biomolecule relationship prediction in molecular association network. Commun. Biol. 3, 1–9 (2020)

    Article  Google Scholar 

  29. Guo, Z., You, Z., Yi, H., Zheng, K., Wang, Y.: MeSHHeading2vec: a new method for representing MeSH headings as feature vectors based on graph embedding algorithm. bioRxiv 835637 (2019)

    Google Scholar 

  30. Guo, Z.-H., You, Z.-H., Wang, Y.-B., Huang, D.-S., Yi, H.-C., Chen, Z.-H.: Bioentity2vec: attribute-and behavior-driven representation for predicting multi-type relationships between bioentities. GigaScience 9, giaa032 (2020)

    Article  Google Scholar 

  31. Chen, X., Xie, D., Zhao, Q., You, Z.: MicroRNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 20, 515–539 (2019)

    Article  Google Scholar 

  32. Chen, X., Huang, Y., You, Z., Yan, G., Wang, X.: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33, 733–739 (2016)

    Google Scholar 

  33. You, Z., et al.: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLOS Comput. Biol. 13, e1005455 (2017)

    Article  Google Scholar 

  34. Zheng, K., You, Z.-H., Li, J.-Q., Wang, L., Guo, Z.-H., Huang, Y.-A.: iCDA-CGR: Identification of circRNA-disease associations based on chaos game representation. PLoS Comput. Biol. 16, e1007872 (2020)

    Article  Google Scholar 

  35. Wang, L., You, Z., Li, Y., Zheng, K., Huang, Y.: GCNCDA: a new method for predicting CircRNA-disease associations based on graph convolutional network algorithm. bioRxiv 858837 (2019)

    Google Scholar 

  36. Ji, B.-Y., You, Z.-H., Cheng, L., Zhou, J.-R., Alghazzawi, D., Li, L.-P.: Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model. Sci. Rep. 10, 1–12 (2020)

    Article  Google Scholar 

  37. Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: Dbmda: A unified embedding for sequence-based mirna similarity measure with applications to predict and validate mirna-disease associations. Mol. Ther.-Nucleic Acids 19, 602–611 (2020)

    Article  Google Scholar 

  38. Zheng, K., Wang, L., You, Z.: CGMDA: an approach to predict and validate MicroRNA-disease associations by utilizing chaos game representation and LightGBM. IEEE Access 7, 133314–133323 (2019)

    Article  Google Scholar 

  39. Wang, M., You, Z., Li, L., Wong, L., Chen, Z., Gan, C.: GNMFLMI: graph regularized nonnegative matrix factorization for predicting LncRNA-MiRNA interactions. IEEE Access 8, 37578–37588 (2020)

    Article  Google Scholar 

  40. Wong, L., Huang, Y.A., You, Z.H., Chen, Z.H., Cao, M.Y.: LNRLMI: linear neighbour representation for predicting lncRNA-miRNA interactions. J. Cell Mol. Med. 24, 79–87 (2020)

    Article  Google Scholar 

  41. Hu, P., Huang, Y., Chan, K.C.C., You, Z.: Learning multimodal networks from heterogeneous data for prediction of lncRNA-miRNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinf. 1 (2019)

    Google Scholar 

  42. Huang, Y., et al.: Predicting lncRNA-miRNA Interaction via graph convolution auto-encoder. Front. Genet. 10, 758 (2019)

    Article  Google Scholar 

  43. Huang, Z., Huang, Y., You, Z., Zhu, Z., Sun, Y.: Novel link prediction for large-scale miRNA-lncRNA interaction network in a bipartite graph. BMC Med. Genom. 11, 113 (2018)

    Article  Google Scholar 

  44. Miao, Y.-R., Liu, W., Zhang, Q., Guo, A.-Y.: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res. 46, D276–D280 (2017)

    Article  Google Scholar 

  45. Chen, G., et al.: LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41, D983–D986 (2012)

    Article  Google Scholar 

  46. Cheng, L., et al.: LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res. 47, D140–D144 (2018)

    Article  Google Scholar 

  47. Huang, Z., et al.: HMDD v3.0: a database for experimentally supported human microRNA–disease associations. Nucleic acids research 47, D1013–D1017 (2018)

    Article  Google Scholar 

  48. Piñero, J., et al.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. gkw943 (2016)

    Google Scholar 

  49. Davis, A.P., et al.: Text mining effectively scores and ranks the literature for improving chemical-gene-disease curation at the comparative toxicogenomics database. PLoS One 8, e58201 (2013)

    Article  Google Scholar 

  50. Chou, C.-H., et al.: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46, D296–D302 (2017)

    Article  Google Scholar 

  51. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2017)

    Article  Google Scholar 

  52. Szklarczyk, D., et al.: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. gkw937 (2016)

    Google Scholar 

  53. Kozomara, A., Birgaoanu, M., Griffiths-Jones, S.: miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2018)

    Article  Google Scholar 

  54. Fang, S., et al.: NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 46, D308–D314 (2017)

    Article  Google Scholar 

  55. Shen, J., et al.: Predicting protein–protein interactions based only on sequences information. Proc. Natl. Acad. Sci. 104, 4337–4341 (2007)

    Article  Google Scholar 

  56. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  57. Chen, T., Guestrin, C.: XGboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China, grant number 61772333. This research was funded by the Special Project of Education Department of Shaanxi Provincial Government of china, grant number 16JK1048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, P., Zhao, BW., Wong, L., You, ZH., Guo, ZH., Yi, HC. (2020). A Novel Computational Method for Predicting LncRNA-Disease Associations from Heterogeneous Information Network with SDNE Embedding Model. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics