Skip to main content

A Novel Stochastic Block Model for Network-Based Prediction of Protein-Protein Interactions

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

Abstract

Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. Hence, a variety of computational approaches have been proposed to predict protein-protein interactions from an alternative view. However, most of them heavily rest on the biological information of proteins while ignoring the latent structural features in protein interaction networks. In this paper, we propose a novel stochastic block model for network-based prediction of protein interactions. By simulating the generative process of a protein interaction network, our approach can capture the latent structural features of proteins from the perspective of forming protein complexes, thus verifying whether two proteins interact with each other or not. To evaluate the performance of the proposed prediction approach, a series of extensive experiments have been conducted and we have also compared our approach with state-of-the-art network-based prediction model. The experiment results show that our approach has a promising performance when applied to predict protein-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9(Sep), 1981–2014 (2008)

    MATH  Google Scholar 

  2. Bass, J.I.F., Diallo, A., Nelson, J., Soto, J.M., Myers, C.L., Walhout, A.J.: Using networks to measure similarity between genes: association index selection. Nat. Methods 10(12), 1169 (2013)

    Article  Google Scholar 

  3. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240 (2006)

    Google Scholar 

  4. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  5. Ge, H., Liu, Z., Church, G.M., Vidal, M.: Correlation between transcriptome and interactome mapping data from saccharomyces cerevisiae. Nat. Genet. 29(4), 482–486 (2001)

    Article  Google Scholar 

  6. Gopalan, P.K., Gerrish, S., Freedman, M., Blei, D.M., Mimno, D.M.: Scalable inference of overlapping communities. In: Advances in Neural Information Processing Systems, pp. 2249–2257 (2012)

    Google Scholar 

  7. Granovetter, M.S.: The strength of weak ties. In: Social Networks, pp. 347–367. Elsevier (1977)

    Google Scholar 

  8. Ho, Y., et al.: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)

    Article  Google Scholar 

  9. Hu, L., Chan, K.C.: Discovering variable-length patterns in protein sequences for protein-protein interaction prediction. IEEE Trans. Nanobiosci. 14(4), 409–416 (2015)

    Article  Google Scholar 

  10. Hu, L., Chan, K.C.: Extracting coevolutionary features from protein sequences for predicting protein-protein interactions. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(1), 155–166 (2016)

    Article  Google Scholar 

  11. Hu, L., Hu, P., Yuan, X., Luo, X., You, Z.H.: Incorporating the coevolving in- formation of substrates in predicting hiv-1 protease cleavage sites. IEEE/ACM Trans. Comput. Biol. Bioinf. (2019, early access)

    Google Scholar 

  12. Hu, L., Yuan, X., Hu, P., Chan, K.C.: Efficiently predicting large-scale protein- protein interactions using MapReduce. Comput. Biol. Chem. 69, 202–206 (2017)

    Article  Google Scholar 

  13. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehen- sive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. 98(8), 4569–4574 (2001)

    Article  Google Scholar 

  14. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

    Article  Google Scholar 

  15. Kerrien, S., et al.: The intact molecular interaction database in 2012. Nucleic Acids Res. 40(D1), D841–D846 (2012)

    Article  Google Scholar 

  16. Keskin, O., Tuncbag, N., Gursoy, A.: Predicting protein–protein interactions from the molecular to the proteome level. Chem. Rev. 116(8), 4884–4909 (2016)

    Article  Google Scholar 

  17. Kovács, I.A., et al.: Network-based prediction of protein interactions. Nature Commun. 10(1), 1–8 (2019)

    Article  MathSciNet  Google Scholar 

  18. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)

    Article  Google Scholar 

  19. Mann, M., Pandey, A.: Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. Trends Biochem. Sci. 26(1), 54–61 (2001)

    Article  Google Scholar 

  20. Metz, C.E.: Basicprinciplesofrocanalysis. In: Seminarsinnuclearmedicine, vol.8, pp. 283–298. WB Saunders (1978)

    Google Scholar 

  21. Mirabello, C., Wallner, B.: InterPred: a pipeline to identify and model protein–protein interactions. Proteins: Struct., Funct., Bioinf. 85(6), 1159–1170 (2017)

    Article  Google Scholar 

  22. Rolland, T., et al.: A proteome-scale map of the human interactome network. Cell 159(5), 1212–1226 (2014)

    Article  Google Scholar 

  23. Simmel, G.: Soziologie: Untersuchungen u ̈ber die formen der vergesellschaftung. BoD–Books on Demand (2015)

    Google Scholar 

  24. Szklarczyk, D., et al.: The string database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, gkw937 (2016)

    Google Scholar 

  25. Tong, A.H.Y., et al.: A combined ex-perimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295(5553), 321–324 (2002)

    Article  Google Scholar 

  26. Tong, A.H.Y., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550), 2364–2368 (2001)

    Article  Google Scholar 

  27. Tong, A.H.Y., et al.: Global mapping of the yeast genetic interaction network. Science 303(5659), 808–813 (2004)

    Article  Google Scholar 

Download references

Funding

This work has been supported by the National Natural Science Foundation of China [grant number 61602352], and the Pioneer Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lun Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Hu, P., Hu, L. (2020). A Novel Stochastic Block Model for Network-Based Prediction of Protein-Protein Interactions. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics