Skip to main content

Active Learning with Crowdsourcing for the Cold Start of Imbalanced Classifiers

  • Conference paper
  • First Online:
Book cover Cooperative Design, Visualization, and Engineering (CDVE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12341))

Abstract

We present a novel cooperative strategy based on active learning and crowdsourcing, dedicated to provide a solution to the cold start stage, i.e. initializing the classification of a large set of data with no attached labels. The strategy is moreover designed to handle an imbalanced context in which random selection is highly inefficient. In this purpose, our method is guided by an unsupervised clustering, and the computation of cluster quality and impurity indexes, updated at each active learning step. The strategy is explained on a case study of annotating Twitter content w.r.t. a real flood event. We also show that our technique can cope with multiple heterogeneous data representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida, H., Guedes, D., Meira, W., Zaki, M.J.: Is there a best quality metric for graph clusters? In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 44–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23780-5_13

    Chapter  Google Scholar 

  2. Anthony, B., Derek, G., Pádraig, C.: Using crowdsourcing and active learning to track sentiment in online media, pp. 145–150. https://doi.org/10.3233/978-1-60750-606-5-14. http://www.medra.org/servlet/aliasResolver?alias=iospressISSNISBN&issn=0922-6389&volume=215&spage=145

  3. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics, 1st edn. pp. xx, 738. Springer, New York (2006)

    Google Scholar 

  4. Brangbour, E., et al.: Computing flood probabilities using Twitter: application to the Houston urban area during Harvey. In: 9th International Workshop on Climate Informatics (2019)

    Google Scholar 

  5. Brangbour, E., et al.: Extracting localized information from a Twitter corpus for flood prevention. arXiv:1903.04748 (2019)

  6. Bruneau, P., Otjacques, B.: A probabilistic model selection criterion for spectral clustering. Intell. Data Anal. 22(5), 1059–1077 (2018)

    Article  Google Scholar 

  7. Bruneau, P., Tamisier, T.: Transfer learning and mixed input deep neural networks for estimating flood severity in news content. In: MediaEval Multimedia Evaluation Workshop (2019)

    Google Scholar 

  8. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  10. Davies, D., Bouldin, D.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI, 1(2), 224–227 (1979)

    Google Scholar 

  11. Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W.: Tweet2Vec: Character-Based Distributed Representations for Social Media. arXiv:1605.03481 (2016)

  12. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  13. Emmons, S., Kobourov, S., Gallant, M., Börner, K.: Analysis of network clustering algorithms and cluster quality metrics at scale. PLOS One 11(7), e0159161 (2016)

    Article  Google Scholar 

  14. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983)

    Article  MATH  Google Scholar 

  15. Frey, B., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)

    Google Scholar 

  17. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  MATH  Google Scholar 

  18. Joachims, T.: Text categorization with Support Vector Machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Chapter  Google Scholar 

  19. Kang, J., Ryu, K.R., Kwon, H.-C.: Using Cluster-Based Sampling to Select Initial Training Set for Active Learning in Text Classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 384–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_46

    Chapter  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Sys. 25, 1097–1105 (2012)

    Google Scholar 

  21. Matgen, P., et al.: Integrating Data Streams from in-situ Measurements, Social Networks and Satellite Earth Observation to Augment Operational Flood Monitoring and Forecasting: the 2017 Hurricane Season in the Americas as a Large-scale Test Case. AGU Fall Meeting Abstracts 31 (2017)

    Google Scholar 

  22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781 (2013)

  23. Nowak, S., Rüger, S.: How reliable are annotations via crowdsourcing: a study about inter-annotator agreement for multi-label image annotation. In: Proceedings of the International Conference on Multimedia Information Retrieval - MIR’10, p. 557. ACM Press. https://doi.org/10.1145/1743384.1743478. http://portal.acm.org/citation.cfm?doid=1743384.1743478

  24. Rosenberg, A., Hirschberg, J.: V-Measure: a conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 410–420 (2007)

    Google Scholar 

  25. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  26. Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA (2001)

    Google Scholar 

  27. Settles, B.: Active learning literature survey. Technical report. University of Wisconsin-Madison Department of Computer Sciences (2009). https://minds.wisconsin.edu/handle/1793/60660

  28. Vidal, R.: Subspace clustering. IEEE Sig. Proc. Mag. 28(2), 52–68 (2011)

    Article  Google Scholar 

  29. Vinh, N., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11(95), 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems 17, pp. 1601–1608. MIT Press (2005)

    Google Scholar 

  31. Zhu, X., Gharamani, Z.: Learning from labeled and unlabeled data with label propagation. Technical report. CMU-CALD-02-107, Carnegie Mellon University (2002)

    Google Scholar 

Download references

Acknowledgements

This work was performed in the context of the Publimape project, funded by the CORE programme of the Luxembourgish National Research Fund (FNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Brangbour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brangbour, E., Bruneau, P., Tamisier, T., Marchand-Maillet, S. (2020). Active Learning with Crowdsourcing for the Cold Start of Imbalanced Classifiers. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2020. Lecture Notes in Computer Science(), vol 12341. Springer, Cham. https://doi.org/10.1007/978-3-030-60816-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60816-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60815-6

  • Online ISBN: 978-3-030-60816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics