Skip to main content

The Improvement Direction Mapping Method

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2020)

Abstract

The Improvement Direction Mapping (IDM) is a novel multi-objective local-search method, that independently steers a solution set towards promising regions by computing improvement directions in the objective space and transform them, into the variable space, as search directions. The IDM algorithm consists of two main sub-tasks 1) the computation of the improvement directions in the objective space 2) the transformation of directions from the objective space to the variable space. The transformation from the objective to the variable space is carried out via a pseudo-inverse of the Jacobian matrix. The goal of this paper is two fold: it introduces the main IDM algorithm and three approaches to determine improvement directions, and then it explores the trade-off of either approach by performing statistical analysis on the experimental results. The approaches are based on: 1) Pareto dominance, 2) aggregation functions, and 3) indicator functions. A set of well-known benchmark problems are used to compare the three proposed improvement directions and the Directed Search method. This paper is devoted to introduce the IDM algorithm for multi-objective optimization, nonetheless, the application of IDM for hybridizing stochastic-global-search algorithms is straight forward.

S. I. Valdez is supported by the Consejo Nacional de Ciencia y Tecnología, CONACYT México, Cátedra 7795.

A. Hernández-Aguirre—We acknowledge support from Proyecto FORDECyT No. 296737 “Consorcio en Inteligencia Artificial”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)

    Article  Google Scholar 

  2. Botello-Aceves, S., Hernandez-Aguirre, A., Valdez, S.I.: Computation of the improvement directions of the pareto front and its application to MOEAs. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference. GECCO’ 2020, Association for Computing Machinery, New York, NY, USA, pp. 480–488 (2020). https://doi.org/10.1145/3377930.3390165

  3. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998). https://doi.org/10.1137/S1052623496307510

    Article  MathSciNet  MATH  Google Scholar 

  4. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

  7. Dixon, P.M.: Bootstrap resampling. Encyclopedia of environmetrics, vol. 1 (2006)

    Google Scholar 

  8. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    Article  MathSciNet  Google Scholar 

  9. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)

    Article  Google Scholar 

  10. Hansen, M.P., Jaszkiewicz, A.: Evaluating the Quality of Approximations to the Non-Dominated Set. Department of Mathematical Modelling, Technical Universityof Denmark, IMM, Kongens Lyngby (1994)

    Google Scholar 

  11. Harada, K., Sakuma, J., Kobayashi, S.: Local search for multiobjective function optimization: Pareto descent method. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. GECCO’ 2006, Association for Computing Machinery, New York, NY, USA, pp. 659–666 (2006). https://doi.org/10.1145/1143997.1144115

  12. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  13. Hwang, C., Masud, A.S.M.: Multiple Objective Decision Making–Methods and Applications: A State-of-the-Art Survey. Springer Science & Business Media, New York (2012)

    Google Scholar 

  14. Ishibuchi, H., Masuda, H., Nojima, Y.: Pareto fronts of many-objective degenerate test problems. IEEE Trans. Evol. Comput. 20(5), 807–813 (2016)

    Article  Google Scholar 

  15. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) Evolutionary Multi-Criterion Optimization, pp. 110–125. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  16. Lam, F.C., Longnecker, M.T.: A modified Wilcoxon rank sum test for paired data. Biometrika 70(2), 510–513 (1983). https://doi.org/10.1093/biomet/70.2.510

    Article  MathSciNet  Google Scholar 

  17. Li, M., Zheng, J.: Spread assessment for evolutionary multi-objective optimization. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.K., Sevaux, M. (eds.) Evolutionary Multi-Criterion Optimization, pp. 216–230. Springer, Berlin Heidelberg (2009)

    Chapter  Google Scholar 

  18. Messac, A., Ismail-Yahaya, A., Mattson, C.: The normalized normal constraint method for generating the pareto frontier. Struct. Multi. Optim. 25(2), 86–98 (2003). https://doi.org/10.1007/s00158-002-0276-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-objective optimisation. In: The 2003 Congress on Evolutionary Computation. CEC’ 2003, vol. 2, pp. 878–885, December 2003. https://doi.org/10.1109/CEC.2003.1299759

  20. Phan, D.H., Suzuki, J.: R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1836–1845 (2013)

    Google Scholar 

  21. Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11, October 2015. https://doi.org/10.1109/CLEI.2015.7360024

  22. Schütze, O., Alvarado, S., Segura, C., Landa, R.: Gradient subspace approximation: a direct search method for memetic computing. Soft Comput. 21(21), 6331–6350 (2017). https://doi.org/10.1007/s00500-016-2187-x

    Article  MATH  Google Scholar 

  23. Schütze, O., Martín, A., Lara, A., Alvarado, S., Salinas, E., Coello, C.A.C.: The directed search method for multi-objective memetic algorithms. Comput. Optim. Appl. 63(2), 305–332 (2015). https://doi.org/10.1007/s10589-015-9774-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. 8(2), 125–147 (2000). https://doi.org/10.1162/106365600568158

    Article  Google Scholar 

  25. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, Swiss Federal Institute of Technology Zurich, Computer Engineering and Networks Laboratory (1999)

    Google Scholar 

  26. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

  27. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

  28. Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 373–404. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Botello-Aceves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Botello-Aceves, S., Valdez, S.I., Hernández-Aguirre, A. (2020). The Improvement Direction Mapping Method. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Soft Computing. MICAI 2020. Lecture Notes in Computer Science(), vol 12468. Springer, Cham. https://doi.org/10.1007/978-3-030-60884-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60884-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60883-5

  • Online ISBN: 978-3-030-60884-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics