Skip to main content

Generation of Pseudo-random Numbers Based on Network Traffic

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2020)

Abstract

The Pseudo Random Numbers generators can be based on chaotic maps; they are still deterministic functions, so it is possible to predict future results. On the other hand, we have the real random number generators that comply with the mentioned characteristics, this is possible at the cost of high latency and slowness by the use of physical processes. In this article, the use of network traffic in the generation of random sequences is tested. An equation is used to improve the statistical properties of the method. It is verified that network traffic tends to be more chaotic in spaces with a larger number of users. Results show that the method generates very different sequences, but with unequal bit generation. We present a method for the generation of pseudo random numbers based on network traffic, minimizing the repetition of generated sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanchard, P., Guerraoui, R., Stainer, J., Antoniadis, K.: Concurrency as a random number generator technical report. Technical report (2016)

    Google Scholar 

  2. Chen, Y., Wang, T.X., Katz, R.H.: Energy efficient ethernet encodings. In: 33rd IEEE Conference on Local Computer Networks, LCN 2008, pp. 122–129. IEEE (2008)

    Google Scholar 

  3. Dąbrowska-Boruch, A., Gancarczyk, G., Wiatr, K.: Implementation of a RANLUX based pseudo-random number generator in FPGA using VHDL and impulse C. Comput. Inf. 32(6), 1272–1292 (2014)

    Google Scholar 

  4. Dörre, F., Klebanov, V.: Practical detection of entropy loss in pseudo-random number generators. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 678–689. ACM (2016)

    Google Scholar 

  5. Hamdi, M., Rhouma, R., Belghith, S.: A very efficient pseudo-random number generator based on chaotic maps and s-box tables. Int. J. Comput. Electron. Autom. Control Inf. Eng. 9(2), 481–485 (2015)

    Google Scholar 

  6. Hu, H., Liu, L., Ding, N.: Pseudorandom sequence generator based on the chen chaotic system. Comput. Phys. Commun. 184(3), 765–768 (2013)

    Article  MathSciNet  Google Scholar 

  7. L’Ecuyer, P., Munger, D., Oreshkin, B., Simard, R.: Random numbers for parallel computers: requirements and methods, with emphasis on GPUS. Math. Comput. Simul. 135, 3–17 (2017)

    Article  MathSciNet  Google Scholar 

  8. Lo Re, G., Milazzo, F., Ortolani, M.: Secure random number generation in wireless sensor networks. Concurrency Comput. Pract. Experience 27(15), 3842–3862 (2015)

    Article  Google Scholar 

  9. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. (TOMACS) 8(1), 3–30 (1998)

    Article  Google Scholar 

  10. Müller, S.: Linux random number generator-a new approach (2017)

    Google Scholar 

  11. Park, M., Rodgers, J.C., Lathrop, D.P.: True random number generation using cmos boolean chaotic oscillator. Microelectron. J. 46(12), 1364–1370 (2015)

    Article  Google Scholar 

  12. Parkhurst, W.R.: Routing first-step. Cisco Press (2004)

    Google Scholar 

  13. Payne, W., Rabung, J.R., Bogyo, T.: Coding the lehmer pseudo-random number generator. Commun. ACM 12(2), 85–86 (1969)

    Article  Google Scholar 

  14. Saito, M., Matsumoto, M.: SIMD-oriented fast mersenne twister: a 128-bit pseudorandom number generator. In: Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 607–622. Springer, Berlin (2008)

    Chapter  Google Scholar 

  15. Saito, M., Matsumoto, M.: Variants of mersenne twister suitable for graphic processors. ACM Trans. Math. Softw. (TOMS) 39(2), 12 (2013)

    Article  Google Scholar 

  16. Santisteban, J., Tejada-Cárcamo, J.: Unilateral jaccard similarity coefficient. In: GSB@ SIGIR, pp. 23–27 (2015)

    Google Scholar 

  17. Short, K.M.: Steps toward unmasking secure communications. Int. J. Bifurcat. Chaos 4(04), 959–977 (1994)

    Article  Google Scholar 

  18. Vajargah, B.F., Asghari, R.: A pseudo random number generator based on chaotic henon map (CHCG). IJMEC 5(15), 2026–37 (2015)

    Google Scholar 

  19. Vajargah, B.F., Asghari, R.: A novel pseudo-random number generator for cryptographic applications. Indian J. Sci. Technol. 9(6), 1–5 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Santisteban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marroquin, W., Santisteban, J. (2020). Generation of Pseudo-random Numbers Based on Network Traffic. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Soft Computing. MICAI 2020. Lecture Notes in Computer Science(), vol 12468. Springer, Cham. https://doi.org/10.1007/978-3-030-60884-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60884-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60883-5

  • Online ISBN: 978-3-030-60884-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics