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Abstract. Filtering is a fundamental strategy of metric similarity
indexes to minimise the number of computed distances. Given a triple
of objects for which distances of two pairs are known, the lower and
upper bounds on the third distance can be set as the difference and the
sum of these two already known distances, due to the triangle inequality
rule of the metric space. For efficiency reasons, the tightness of bounds
is crucial, but as angles within triangles of distances can be arbitrary,
the worst case with zero and straight angles must also be considered for
correctness. However, in data of real-life applications, the distribution of
possible angles is skewed and extremes are very unlikely to occur. In this
paper, we enhance the existing definition of bounds on the unknown dis-
tance with information about possible angles within triangles. We show
that two lower bounds and one upper bound on each distance exist in
case of limited angles. We analyse their filtering power and confirm high
improvements of efficiency by experiments on several real-life datasets.

Keywords: Metric space · Similarity search · Triangle inequality ·
Metric filtering · Estimating unknown distance

1 Introduction

Metric spaces are often used to formalise a similarity of complex data objects
from various domains. Given a domain of objects D, a metric space is pair (D, d)
where d : D × D �→ R

+
0 is a distance function which quantifies the dissimilarity

of objects. This function must be non-negative, symmetric, and the distances
among three arbitrary objects from D must satisfy the triangle inequality. Metric
similarity searching has become popular due to its wide applicability, and many
metric indexes have been proposed [10,12]. We consider the query by example
paradigm: having a dataset X ⊆ D and an arbitrary query object q ∈ D, the
task is to efficiently find objects o ∈ X that are close to q according to d.
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The simplest type of a similarity query is the range query : for a threshold
r ≥ 0 and a query object q ∈ D, its solution is {o ∈ X| d(q, o) ≤ r}. Considering
an arbitrary reference object pi, called pivot, and assuming that distances d(o, pi)
and d(q, pi) are known, the triangle inequalities define the lower bound on d(q, o):

d(q, o) ≥ |d(o, pi) − d(q, pi)|. (1)

If the lower bound on distance d(q, o) given by an arbitrary pivot pi is greater
than radius r, o cannot be in the answer of the range query. Accessing o and
evaluation of d(q, o) can thus be avoided. By analogy, if the upper bound:

d(q, o) ≤ d(o, pi) + d(q, pi), (2)

given by triangle inequalities is smaller than r for an arbitrary pi, then o is guar-
anteed to be in the query answer, and the evaluation of d(q, o) can be skipped.

The triangle inequality rule enables to isometrically embed objects q, o, pi in
2D Euclidean space to form a triangle with sides d(q, o), d(o, pi), d(pi, q) [4]. We
further focus on angles in this triangle in the Euclidean space. Please notice that
findings in this article are valid for all metric spaces thanks to this embedding.

Bounds given by Eqs. 1 and 2 are tight, i.e., the equalities hold, if there are
two zero angles and one straight angle within the triangle q, o, pi with distances
d(q, o), d(pi, o), and d(pi, q). However, this is an unrealistic case in most of metric
spaces that describe the similarity of complex real-life data.

We analyse triangle inequalities under the assumption of limited angles in
triangles. We show that the limitation of angles can increase the lower bound
given by Eq. 1 even by 66%, and decrease the upper bound given by Eq. 2 by 40%
in real scenarios. Moreover, the third bound exists: the lower bound on a side
based on a sum of lengths of two other sides in a triangle. These improvements
have a dramatic impact on the filtering power of triangle inequalities.

Section 2 contains analysis to enhance triangle inequalities by angles limi-
tation. Section 3 illustrates what happens if the limitation of angles is wrong.
Section 4 defines, when are the newly proposed bounds correct. Section 5 pro-
vides instructions to set the angles limitation for similarity search. Section 6
presents experimental results and Sect. 7 concludes the paper.

2 Triangle Inequalities with Limited Angles

We define novel lower and upper bounds on distances in this section, which
are given by the triangle inequalities that assume the limited range of angles
within triangles of distances. Specifically, we consider an arbitrary metric space
(D, d) and three objects q, o, pi ∈ D. The triangle with sides a, b, c ∈ R

+
0 is given

by pairwise distances between these objects, and we assume that the distance
c = d(q, o) is unknown and the distances a and b are already evaluated. We
denote α, β, γ the angles in triangle �a, b, c that are opposite to respective
sides. Since we always focus on just one isolated triangle �a, b, c, we can assume1

1 The assumption is used just in the last sections of the article, starting from Sect. 4.
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Table 1. Notation used throughout this paper

(D, d) metric space: the domain of objects and the distance function

X ⊆ D the searched dataset

q ∈ D, r ∈ R
+
0 the query object and the radius of the query

a, b, c pairwise distances between arbitrary given objects from D,

c is the only unknown distance

α, β, γ angles in the triangle of distances that are opposite to sides
a, b, c

[Ωmin, Ωmax] range of the angles α, β, γ in the metric space, usually limited
more than to [0◦, 180◦] in practice

fsum(α, β), fdiff(α, β) functions of angles used in equations expressing c using the
sum and difference of a and b, respectively

CLB sum(Ωmin, Ωmax), minimum and maximum possible values of fsum(α, β) for

CUB sum(Ωmin, Ωmax) given values Ωmin and Ωmax

CLB diff(Ωmin, Ωmax), minimum and maximum possible values of fdiff(α, β) for

CUB diff(Ωmin, Ωmax) given values Ωmin and Ωmax

LBsum(a, b, Ωmin, Ωmax) the lower bound on c based on a sum of a and b, (Eq. 5)

LBdiff(a, b, Ωmin, Ωmax) the lower bound on c based on a difference of a and b, (Eq. 6)

UBsum(a, b, Ωmin, Ωmax) the upper bound on c based on a sum of a and b, (Eq. 8)

a ≤ b without a loss of generality for the application of the similarity search2.
The whole notation is summarised in Table 1.

Two following lemmas form the core of the paper as they allow to define the
bounds on c given by triangle inequalities that consider a limited range of angles
α, β, γ.

Lemma 1. For an arbitrary triangle with sides a, b, c and corresponding angles
α, β, γ holds:

c = (a + b) · 1 − cos γ

cos α + cos β

Proof. All cosines in the fraction can be substituted using the cosine rule to get:

(a+b)· 1 − cos γ

cos α + cos β
=

(a + b)(1 − a2+b2−c2

2ab
)

b2+c2−a2

2bc
+ a2+c2−b2

2ac

= c
−a3 + a2b + ab2 − b3 + ac2 + bc2

−a3 + a2b + ab2 − b3 + ac2 + bc2
= c

��

2 The swap of distances a and b is achieved by swapping the notation of objects q
and o. While this swaps lengths a and b, it preserves the distance c = d(q, o) as
distances d(q, o) and d(o, q) are symmetric.
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Lemma 2. For an arbitrary triangle with sides a, b, c and corresponding angles
α, β, γ holds:

c = |a − b| · 1 + cos γ

| cos α − cos β|

Proof. The numerator of the fraction is non-negative, and all cosines in the
fraction can be substituted using the cosine rule to get:

|a − b| · |1 + cos γ|
| cos α − cos β| =

|(a − b)(1 + a2+b2−c2

2ab
)|

| b2+c2−a2

2bc
− a2+c2−b2

2ac
| = c· |a

3 + a2b − ab2 − b3 − ac2 + bc2|
|a3 + a2b − ab2 − b3 − ac2 + bc2| = c

��

Lemma 1 expresses c using the sum of a and b and the function of α, β, γ. Notice
thus the similarity with Eq. 2. Lemma 2 expresses c using the difference of a and
b, similarly as Eq. 1, and another function of α, β and γ.

Real-life metric spaces contain triangles �a, b, c with angles α, β, γ from a
more narrow range than [0◦, 180◦]. Let us thus assume bounds Ωmin, Ωmax on
the angles such that ∀α, β, γ : Ωmin ≤ α, β, γ ≤ Ωmax. Please notice that bounds
Ωmin and Ωmax are meaningful if and only if 0◦ ≤ Ωmin ≤ 60◦ ≤ Ωmax ≤ 180◦,
since α + β + γ = 180◦. The key feature of Lemmas 1 and 2 is that Ωmin and
Ωmax also limit the values of the fractions used in these lemmas. We further
denote and alter these fractions as:

fsum(α, β) =
1 − cos γ

cos α + cos β
=

1 − cos(180◦ − α − β)
cos α + cos β

=
1 + cos(α + β)
cos α + cos β

, (3)

fdiff(α, β) =
1 + cos γ

| cos α − cos β| =
1 + cos(180◦ − α − β)

| cos α − cos β| =
1 − cos(α + β)
| cos α − cos β| (4)

Intuitively, fsum(α, β) is a coefficient exploited to express c using the sum of a
and b, and fdiff(α, β) is utilised to express c using the difference of a and b.

We denote CLB sum(Ωmin, Ωmax) and CLB diff(Ωmin, Ωmax) the minimum pos-
sible values of fsum(α, β) and fdiff(α, β) that are defined for a range of angles
[Ωmin, Ωmax]. As the notation suggests, these minimum values define two lower
bounds on c, since:

c = (a + b) · fsum(α, β) ≥ (a + b) · CLB sum(Ωmin, Ωmax),

c = |a − b| · fdiff(α, β) ≥ |a − b| · CLB diff(Ωmin, Ωmax)

We denote these lower bounds as:

LBsum(a, b, Ωmin, Ωmax) = (a + b) · CLB sum(Ωmin, Ωmax), (5)
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Algorithm 1. Algorithm to evaluate value CLB sum(Ωmin, Ωmax)
Input: Ωmin, Ωmax � bounds on angles α, β, γ; 0◦ ≤ Ωmin ≤ 60◦ ≤ Ωmax ≤ 180◦

Output: CLB sum(Ωmin, Ωmax) � coef. for the lower bound on c based on sum of a, b
if 180◦ − 2 · Ωmax ≥ Ωmin then � Can be two angles in a triangle equal to Ωmax?

α ← Ωmax

β ← Ωmax

γ ← 180◦ − α − β
else

α ← min(Ωmax, (180◦ − Ωmin)/2)
β ← α
γ ← max(Ωmin, 180◦ − 2 · α)

Substitute values α, β, γ in Eq. 3 to get value CLB sum(Ωmin, Ωmax)

Algorithm 2. Algorithm to evaluate value CLB diff(Ωmin, Ωmax)
Input: Ωmin, Ωmax � bounds on angles α, β, γ; 0◦ ≤ Ωmin ≤ 60◦ ≤ Ωmax ≤ 180◦

Output: CLB diff(Ωmin, Ωmax) � coef. for the lower bound on c based on diff. of a, b
if 180◦ − Ωmax − Ωmin ≤ Ωmax then � Can be two angles in a tr. Ωmax and Ωmin?

α ← Ωmin

β ← min(Ωmax, 180◦ − 2 · Ωmin)
γ ← 180◦ − α − β

else
α ← max(Ωmin, 180◦ − 2 · Ωmax)
β ← 180◦ − α − Ωmax

γ ← Ωmax

Substitute values α, β, γ in Eq. 4 to get value CLB diff(Ωmin, Ωmax)

LBdiff(a, b, Ωmin, Ωmax) = |a − b| · CLB diff(Ωmin, Ωmax) (6)

Similarly, maximum possible values of fsum(α, β) and fdiff(α, β) for a range
[Ωmin, Ωmax], denoted as CUB sum(Ωmin, Ωmax) and CUB diff(Ωmin, Ωmax), define
two upper bounds on c, since:

c = (a + b) · fsum(α, β) ≤ (a + b) · CUB sum(Ωmin, Ωmax)

c = |a − b| · fdiff(α, β) ≤ |a − b| · CUB diff(Ωmin, Ωmax) (7)

and we denote just the first one as:

UBsum(a, b, Ωmin, Ωmax) = (a + b) · CUB sum(Ωmin, Ωmax) (8)

A derivation of value CUB diff(Ωmin, Ωmax) for given [Ωmin, Ωmax] is simple
as it is infinity for all meaningful ranges [Ωmin, Ωmax]. This is given by the
denominator in Eq. 4, which is zero for α = β. Equation 7 thus defines a trivial
upper bound on c: infinity, for all meaningful ranges [Ωmin, Ωmax].

A derivation of concrete values of CLB diff(Ωmin, Ωmax), CLB sum(Ωmin, Ωmax),
and CUB sum(Ωmin, Ωmax) is slightly complicated as angles α, β, γ are limited not
only by Ωmin and Ωmax, but also by equation α +β + γ = 180◦. For this reason,
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Algorithm 3. Algorithm to evaluate value CUB sum(Ωmin, Ωmax)
Input: Ωmin, Ωmax � bounds on angles α, β, γ; 0◦ ≤ Ωmin ≤ 60◦ ≤ Ωmax ≤ 180◦

Output: CUB sum(Ωmin, Ωmax) � coef. for the upper bound on c based on sum of a, b
if 180◦ − 2 · Ωmin ≤ Ωmax then � Can be two angles in a triangle equal to Ωmin?

α ← Ωmin

β ← Ωmin

γ ← 180◦ − 2 · Ωmin

else
α ← max(Ωmin, 180◦ − 2 · Ωmax)
β ← 180◦ − α − Ωmax

γ ← Ωmax

Substitute values α, β, γ in Eq. 3 to get value CUB sum(Ωmin, Ωmax)

Table 2. Examples of triangle inequalities for given ranges of angles Ωmin, Ωmax

[Ωmin, Ωmax] UBsum(a, b, Ωmin, Ωmax) LBdiff(a, b, Ωmin, Ωmax) LBsum(a, b, Ωmin, Ωmax)

[0◦, 180◦] c ≤ (a+ b) · 1 c ≥ |a − b| · 1 c ≥ (a+ b) · 0
[60◦, 60◦] c ≤ (a+ b) · 0.5 undefined c ≥ (a+ b) · 0.5
[20◦, 100◦] c ≤ (a+ b) · 0.815 c ≥ |a − b| · 1.347 c ≥ (a+ b) · 0.174
[20◦, 80◦] c ≤ (a+ b) · 0.742 c ≥ |a − b| · 1.532 c ≥ (a+ b) · 0.174
[25◦, 120◦] c ≤ (a+ b) · 0.869 c ≥ |a − b| · 1.294 c ≥ (a+ b) · 0.216
[25◦, 90◦] c ≤ (a+ b) · 0.752 c ≥ |a − b| · 1.570 c ≥ (a+ b) · 0.216
[30◦, 100◦] c ≤ (a+ b) · 0.778 c ≥ |a − b| · 1.580 c ≥ (a+ b) · 0.259
[30◦, 80◦] c ≤ (a+ b) · 0.684 c ≥ |a − b| · 1.938 c ≥ (a+ b) · 0.259
[0◦, 90◦] c ≤ (a+ b) · 1 c ≥ |a − b| · 1 c ≥ (a+ b) · 0

we immediately formulate Algorithms 1–3 that evaluate CLB diff(Ωmin, Ωmax),
CLB sum(Ωmin, Ωmax), and CUB sum(Ωmin, Ωmax) for given Ωmin and Ωmax.

Table 2 gives examples of newly derived lower and upper bounds on c for
selected ranges [Ωmin, Ωmax]. We choose these ranges to illustrate several fea-
tures:

– We limit the angles by trivial values [Ωmin, Ωmax] = [0◦, 180◦] in the first line,
and we get the pure triangle inequalities.

– The second line represents another extreme case: if all angles are 60◦, i.e. the
triangle �a, b, c is equilateral, bound LBdiff(a, b, Ωmin, Ωmax) is not defined3,
and bounds LBsum(a, b, Ωmin, Ωmax) and UBsum(a, b, Ωmin, Ωmax) are tight.
Together, they give the precise value c = 0.5 · (a + b).

– The lower bound LBsum(a, b, Ωmin, Ωmax) is zero, and thus ineffective in case
of trivially bounded angles [Ωmin, Ωmax] = [0◦, 180◦]. If the angles are more
limited, this bound can bring a new effective limitation on c.

– The last row of the table illustrates that the bounds are not improved beyond
pure triangle inequalities when preserving Ωmin = 0◦ and decreasing Ωmax

to 90◦.
3 In this case, LBdiff(a, b, Ωmin, Ωmax) = 0 · ∞, which is an indefinite expression.
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– The table confirms a contribution of angles limitation. For instance, if all
angles are guaranteed to be within range [30◦, 80◦], UBsum(a, b, Ωmin, Ωmax)
is decreased by 31.6% to 0.684 · (a+ b) and LBdiff(a, b, Ωmin, Ωmax) is almost
doubled to 1.938 · |a− b|, in comparison with unlimited angles. Moreover, the
lower bound LBsum(a, b, Ωmin, Ωmax) = 0.259 · (a + b) is established.

Table 3. Examples of angles α, β, γ that do not meet the limitation [Ωmin, Ωmax] =
[30◦, 80◦] and the consequences for the newly proposed bounds on c that assume this
angles limitation. The wrong assumption may, but does not have to lead to wrong
bounds on distances. Wrong coefficients and angles are in red.

1 2 3 Col. 4 Column 5 Col. 6 Column 7 Col. 8 Column 9

α β γ fsum(α, β) CUB sum(30◦, 80◦) fdiff(α, β) CLB diff(30
◦, 80◦) fsum(α, β) CLB sum(30◦, 80◦)

28 ◦ 75◦ 77◦ 0.679 0.684 1.963 1.938 0.679 0.259

75◦ 80◦ 25◦ 0.217 0.684 22.382 1.938 0.217 0.259

25◦ 78◦ 77◦ 0.696 0.684 1.754 1.938 0.696 0.259

Please notice that if the maximum permitted angle is e.g. 80◦, the sum of two
arbitrary angles in a triangle �a, b, c is at most 160◦, and thus all angles within
triangles are at least 20◦. A setting of Ωmin smaller than 20◦ for Ωmax = 80◦ thus
does not play a role as Ωmin is effectively at least 20◦ in this case. Similarly, if e.g.
Ωmin = 30◦, then Ωmax is effectively at most 120◦ as the sum of two smallest
angles in a triangle is at least 60◦. These features are taken into account by
Algorithms 1–3.

3 Impact of Wrong Angles Limitation [Ωmin, Ωmax]

Real-life metric space similarity models usually do not guarantee bounds on
angles Ωmin and Ωmax. In these cases, the angles limitation can be set exper-
imentally to be valid for a vast majority of all triangles within a given metric
space. Consequences of imprecise bounds [Ωmin, Ωmax] can be of various kinds,
as we illustrate by Table 3. Here, we assume limitation [Ωmin, Ωmax] = [30◦, 80◦],
and show three examples of angles α, β, γ within triangles such that they violate
the angles limitation.

Examples of the Upper Bound UBsum(a,b, Ωmin , Ωmax ): The fourth col-
umn of Table 3 contains values fsum(α, β) defined by Eq. 3 that are evaluated
for actual angles α, β, γ given in columns 1–3. In case of the first and sec-
ond row of the table, this value is smaller than the value CUB sum(30◦, 80◦)
which is provided by the fifth column of the table. Therefore, the upper bound
UBsum(a, b, Ωmin, Ωmax) is correct in case of these two rows despite wrong
bounds [Ωmin, Ωmax]. Specifically, in case of the first row holds:

c = 0.679 · (a + b) ≤ 0.684 · (a + b) = UBsum(a, b, Ωmin, Ωmax)
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and the case of the second row is analogous. In case of the last row, wrong bounds
[Ωmin, Ωmax] cause a wrong upper bound UBsum(a, b, Ωmin, Ωmax), since:

c = 0.696 · (a + b) > 0.684 · (a + b) = UBsum(a, b, Ωmin, Ωmax)

Wrong limitation of angles [Ωmin, Ωmax] in metric spaces thus can, and does not
have to lead to a wrong upper bound UBsum(a, b, Ωmin, Ωmax).

Examples of the Lower Bound LBdiff (a,b, Ωmin , Ωmax ): Column 6 of
Table 3 contains values fdiff(α, β) defined by Eq. 4 that are evaluated for actual
angles α, β, γ given in columns 1–3. In case of first two rows of the table, these
values are bigger than CLB diff(30◦, 80◦) which is presented in the seventh col-
umn. Therefore, the lower bound LBdiff(a, b, Ωmin, Ωmax) is correct in case of
corresponding triangles �a, b, c despite wrong bounds on angles [Ωmin, Ωmax].
Specifically, in case of the first row holds:

c = 1.963 · |a − b| ≥ 1.938 · |a − b| = LBdiff(a, b, Ωmin, Ωmax)

and the case of the second row is analogous. In case of the last row, wrong bounds
[Ωmin, Ωmax] imply a wrong lower bound LBdiff(a, b, Ωmin, Ωmax), since:

c = 1.754 · |a − b| < 1.938 · |a − b| = LBdiff(a, b, Ωmin, Ωmax)

Wrong limitation of angles [Ωmin, Ωmax] in metric spaces thus can, and does not
have to lead to a wrong lower bound LBdiff(a, b, Ωmin, Ωmax).

Examples of the Lower Bound LBsum(a,b, Ωmin , Ωmax ): Examples for
the lower bound LBsum(a, b, Ωmin, Ωmax) are provided in columns 8 and
9 of the Table 3. The same reasoning as in the case of lower bound
LBdiff(a, b, Ωmin, Ωmax) reveals that the lower bound LBsum(a, b, Ωmin, Ωmax)
is correct in case of the first and third row of the Table 3, and wrong in case of
the second row.

We have also proved that all new bounds on c: LBsum(a, b, Ωmin, Ωmax),
LBdiff(a, b, Ωmin, Ωmax) and UBsum(a, b, Ωmin, Ωmax) can be correct at the same
time even in case of a triangle that violates the assumption about the range
of angles [Ωmin, Ωmax] – example is given by the first row of Table 3. The key
question thus is, when are bounds correct, and when they are not.

4 When Are the Bounds on Distances Correct?

Table 2 proves that there exist different values Ωmin, Ωmax that imply the same
value CLB sum(Ωmin, Ωmax). This is also true for coefficients CLB sum(Ωmin, Ωmax)
and CUB sum(Ωmin, Ωmax). Identification of bounds Ωmin, Ωmax that imply a
fixed value of each of these coefficients will enable us to formally describe trian-
gles for which are the newly proposed bounds on c correct, and for which they
are not.
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Let us assume a given value of CLB diff(Ωmin, Ωmax). Since this is a minimal
value of fdiff(α, β), we can define values α and β that imply the given value of
fdiff(α, β) = CLB diff(Ωmin, Ωmax) by an analysis of Eq. 4:

α = 2 · arccos

(
CLB diff(Ωmin, Ωmax) · cos β + 1√CLB diff(Ωmin, Ωmax)2 + 2 · CLB diff(Ωmin, Ωmax) · cos β + 1

)
− β (9)

To facilitate an understanding of this equation, we introduce plots as is the one
in Fig. 1. It depicts the angles α and β on axes y and x, respectively. Angle
γ = 180◦ − α − β also exists, despite it is not explicitly shown in the plot. The
inequality α + β ≤ 180◦ limits the meaningful part of the plot, as well as the
assumption α ≤ β used without a loss of generality for the applications in the
similarity searching (see Sect. 2). These limitations are depicted by black lines
in the figure, so we consider just the triangular area below these lines in the
following.

Fig. 1. Functions describing α and β that imply fdiff(α, β) = CLB diff(30◦, 80◦);
fsum(α, β) = CLB sum(30◦, 80◦); and fsum(α, β) = CUB sum(30◦, 80◦). (Color figure
online)

Function given by Eq. 9 for value CLB diff(30◦, 80◦) is depicted by a blue
curve in the Fig. 1. It is easy to verify that points [α, β] below this curve imply
smaller values fdiff(α, β) than CLB diff(30◦, 80◦), and points above the curve
imply bigger value fdiff(α, β) than CLB diff(30◦, 80◦). Formally:

– if α is smaller than the right side of Eq. 9, then fdiff(α, β) is smaller than
CLB diff(Ωmin, Ωmax),

– if α is bigger than the right side of Eq. 9, then fdiff(α, β) is bigger than
CLB diff(Ωmin, Ωmax),

– if Eq. 9 holds, then fdiff(α, β) is equal to CLB diff(Ωmin, Ωmax).

Therefore, the lower bound LBdiff(a, b, Ωmin, Ωmax) is correct for all triangles
with α bigger or equal to the right side of Eq. 9, and wrong for the others. If α
equals to the right side of Eq. 9, then the lower bound is tight.

Similarly, we analyse Eq. 3 to reveal, when are the lower and upper bounds
on c based on a sum of a and b correct, tight, and wrong, respectively.
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The relation between angles α and β that imply a given value of fsum(α, β)
= CLB sum(Ωmin, Ωmax) is:

α = 2 · arccos

(
CLB sum(Ωmin, Ωmax) · sin β√CLB sum(Ωmin, Ωmax)2 − 2 · CLB sum(Ωmin, Ωmax) · cos β + 1

)
− β

(10)
This function is depicted by the orange curve for angles limitation [Ωmin, Ωmax] =
[30◦, 80◦] in Fig. 1, and its semantics is the following:

– If α is smaller or equal to the right side of Eq. 10, then the lower bound
LBsum(a, b, Ωmin, Ωmax) is correct,

– if α is bigger than the right side of Eq. 10, then this lower bound is wrong,
– if Eq. 10 holds, this lower bound is tight.

Finally, the relation between angles α and β that imply a given value of
fsum(α, β) = CUB sum(Ωmin, Ωmax) is4:

α = 2 · arccos

(
CUB sum(Ωmin, Ωmax) · sin β√CUB sum(Ωmin, Ωmax)2 − 2 · CUB sum(Ωmin, Ωmax) · cos β + 1

)
− β

(11)
and this function is depicted in Fig. 1 by the green curve for angles limitation
[Ωmin, Ωmax] = [30◦, 80◦]. The semantics of this equation is the following:

– If α is bigger or equal to the right side of Eq. 11, then the upper bound
UBsum(a, b, Ωmin, Ωmax) is correct,

– if α is smaller than the right side of Eq. 11, then this upper bound is wrong,
– if Eq. 11 holds, then this upper bound is tight.

Therefore, all three bounds on c are correct in case of triangles whose angles
α, β are depicted between colour curves in the plot like in Fig. 1.

5 Setting Bounds [Ωmin, Ωmax] for Similarity Search

Test Data. In the experiments that follow, we use three different high dimen-
sional datasets, comprising DeCAF, SIFT and MPEG7 image visual descriptors.

DeCAF descriptors [5] are extracted from the Profiset image collection5.
These descriptors derive from the Alexnet convolutional neural network [6], from
which data from the second-last fully connected layer (FC7) is extracted as a
4,096-dimensional array of floating-point values. It has been demonstrated that
Euclidean distance applied to the post-Relu [9] descriptors gives a good surrogate
for semantic similarity over the original images [5].

4 This equation is derived in the same way as Eq. 10, as CUB sum(Ωmin, Ωmax) is given
by the same function as CLB sum(Ωmin, Ωmax).

5 http://disa.fi.muni.cz/profiset/.

http://disa.fi.muni.cz/profiset/
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SIFT descriptors [7] serve us as another real-life example of descriptors of
images. Each descriptor comprises 128 floating point values. This dataset is
known as ANN SIFT1M dataset6.

MPEG7 visual descriptors [8] are provided by the CoPhIR data collection
[2]. Each of five sub-descriptors is accompanied with a suitable metric function,
and all five sub-descriptor spaces are combined into a single metric space (D, d)
by a weighted sum of particular distances [1]. In total, this representation can
be viewed as a 280-dimensional vector compared by non-Minkowski distance.

Selecting Angles [Ωmin , Ωmax ] for a Good Space Approximation. A simple
way to adjust the lower and upper bounds on c is to sample random triangles
of distances from the searched metric data and depict angles α, β in a plot like
is the one in Fig. 1. The limitation of angles [Ωmin, Ωmax] should be selected to
wrap the points by curves (the green, blue and orange) as tightly as possible.

(a) for random triangles (b) for triangles with nearest neighbours

Fig. 2. Angles limitation [Ωmin, Ωmax] for random triangles and those with NN (Color
figure online)

We are, however, interested in the application of newly proposed bounds
on c to speed-up the similarity search. We thus have to pay special attention to
triangles of distances �a, b, c where c is an extremely small distance considering
the data. These extreme cases form a significantly different distribution of angles
α, β, and moreover, they are not effectively sampled by random triangles.

Selecting Angles [Ωmin , Ωmax ] for a Similarity Search. We thus randomly
select 1000 objects q ∈ D and find their 100 nearest neighbours oNN from a
random sample of X of size 100,000 objects. We denote c = d(q, oNN) and for
each oNN select another 100 random pivots pi ∈ X to form a triangle �a, b, c
where a, b are distances d(q, pi), d(oNN, pi) and b ≥ a. Together, we have 10
million samples of angles α, β for each dataset.

We depict both angles distributions in Figs. 2a and b7. Specifically, purple
points (MPEG7) and black circles (100NN – MPEG7) depict angles in triangles

6 http://corpus-texmex.irisa.fr/.
7 We depict just non-overlapping points due to hardware limitations.

http://corpus-texmex.irisa.fr/
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sampled in random, and with focus on nearest neighbours, respectively. Distri-
butions are significantly different, and plots for the DeCAF and SIFT descriptors
confirm this as well, though not shown due to the limited paper length.

Figure 2a also depicts angles [α, β] that imply fsum(α, β) and fdiff(α, β) of
the same values as are given by CLB diff(16◦, 110◦), CLB sum(16◦, 110◦), and
CUB sum(16◦, 110◦). These curves, shown again in blue, orange and green, tightly
embrace angles from randomly sampled triangles (purple points).

Figure 2b illustrates that a distribution of angles [α, β] from triangles with
a near neighbour makes impossible to select bounds [Ωmin, Ωmax] such that all
three curves tightly embrace (the black) sampled points. This is caused by asym-
metric semantics of angles α, β, γ in these triangles. We experimentally veri-
fied that Ωmin cannot be bigger than 4◦ to set properly the orange curve (i.e.
coefficient CLB sum(Ωmin, Ωmax)). Consequently, this Ωmin implies the minimum
meaningful value of Ωmax = 88◦ due to equation α + β + γ = 180◦, and limita-
tion [Ωmin, Ωmax] = [4◦, 88◦] defines a very loose embrace of the sampled points
by the green and blue curve – compare distribution of black circles “100NN –
MPEG7” in Fig. 2b with the coloured curves.

(a) DeCAF

(b) SIFT (c) MPEG7

Fig. 3. Sampled angles with focus on the nearest neighbours, curves with adaptive
limitation [Ωmin, Ωmax] described in Table 4

Therefore, we propose to set bounds [Ωmin, Ωmax] independently for each
of the newly proposed bounds LBsum(a, b, Ωmin, Ωmax), LBdiff(a, b, Ωmin, Ωmax),
UBsum(a, b, Ωmin, Ωmax) on c to maximise their tightness. The formal approach
to select these values of [Ωmin, Ωmax] forms the future work. For now, we just
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identify [Ωmin, Ωmax] for all curves and datasets to tightly wrap angles [α, β]
sampled with a focus on nearest neighbours. These wrappings are illustrated in
Fig. 3, and the values [Ωmin, Ωmax] with corresponding bounds on c are provided
in Table 4.

6 Searching with New Bounds

We experimentally verify the contribution of proposed bounds on c to the similar-
ity search. We search for k = 10 and k = 100 closest objects (k nearest neighbours
– kNN ) to 1,000 randomly selected query objects q ∈ D in 1 million datasets,
and use a data filtering to speed-up the search. In particular, we select 256 pivots
pi ∈ D and pre-compute distances d(o, pi), o ∈ X for all pivots. When the query
object comes, we evaluate all distances d(q, pi), and then for each o ∈ X we eval-
uate the biggest lower bound on d(q, o) provided by an arbitrary pivot pi – it can
be either LBdiff(a, b, Ωmin, Ωmax) or LBsum(a, b, Ωmin, Ωmax). If it is bigger than
the distance r of the current kth nearest object to q, the evaluation of d(q, o) is
skipped. Otherwise, the lowest upper bound UBsum(a, b, Ωmin, Ωmax) provided
by pivots is computed, and if it is smaller than r, the evaluation of d(q, o) is
skipped and o is added to the query answer. Please notice that the order of the
verification of bounds matters, since they are sometimes in a contradiction.

Table 4. Selected angles limitation [Ωmin, Ωmax], and new bounds on c

CLB diff(Ωmin, Ωmax) CLB sum(Ωmin, Ωmax) CUB sum(Ωmin, Ωmax)

DeCAF dataset [28◦, 90◦] [8◦, 86◦] [30◦, 80◦]
c ≥ 1.664 · |b − a| c ≥ 0.070 · (b+ a) c ≤ 0.684 · (b+ a)

SIFT dataset [12◦, 84◦] [3◦, 88.5◦] [20◦, 85◦]
c ≥ 1.264 · |b − a| c ≥ 0.026 · (b+ a) c ≤ 0.762 · (b+ a)

MPEG7 dataset [8◦, 86◦] [4◦, 88◦] [40◦, 90◦]
c ≥ 1.162 · |b − a| c ≥ 0.035 · (b+ a) c ≤ 0.710 · (b+ a)

(a) 10NN (b) 100NN

Fig. 4. Real-life experiments: increase of saved distance computations out of 1M
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The proposed bounds on c do not provide any guarantees on their precision.
Nevertheless, 999 out of a thousand 10NN queries on each dataset are evaluated
with recall 1, i.e. all 10 true nearest neighbours are returned. Query answers
may contain more than k objects due to object involvements based on upper-
bounds8. But despite of this, the median answer on 10NN queries contains 10
objects in case of each examined dataset. Answers to 100NN queries contain all
100 true nearest neighbours in case of 955, 963 and 923 query objects in case of
the DeCAF, SIFT, and MPEG7 dataset, respectively. The biggest answers, 105
on median, are returned in case of the MPEG7 dataset.

Numbers of saved distance computations are presented in Fig. 4. Box-plots
describe the distribution of values over particular query objects. Dark-grey box-
plots form the baseline, i.e. the metric filtering with bounds given by Eqs. 1
and 2. Light-grey box-plots present results achieved by newly proposed bounds.
Median numbers of skipped distance computations increase from 0.4% to 11.8%
(DeCAF), from 59.4% to 75.2% (SIFT), and from 64.5% to 80.2% (MPEG7) in
case of 10NN queries. The results are coherent with 100NN queries.

7 Conclusions and Future Work

We analysed consequences of limited angles within triangles of distances in metric
spaces and their impact on the bounds on distances given by triangle inequalities.
We derived a new lower bound on a distance LBsum(a, b, Ωmin, Ωmax) which is
based on a sum of two opposite sides in a triangle. Our findings have a strong
impact on the filtering power of triangle inequalities, which we confirmed by
experiments with 3 real-life datasets. Moreover, the proposed enhancement of
the filtering is extremely precise, as only 3 out of three thousand 10NN queries
did not provide the query answer with the recall 1 in our experiments. The
proposed method can be immediately incorporated into metric-based indexes
to improve their efficiency, thanks to its simplicity and practically no overhead.
In the future work, we would like to clarify the relation of this work to convex
transforms of distance functions [3,11]. We also would like to develop algorithms
able to set angle limitations automatically. Also, an automatic setting of the
angle limitations for each pivot independently might increase the efficiency of
filtering even further. We plan to report such findings in our future publications.
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