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Abstract. BIRCH clustering is a widely known approach for clustering,
that has influenced much subsequent research and commercial products.
The key contribution of BIRCH is the Clustering Feature tree (CF-Tree),
which is a compressed representation of the input data. As new data
arrives, the tree is eventually rebuilt to increase the compression. After-
ward, the leaves of the tree are used for clustering. Because of the data
compression, this method is very scalable. The idea has been adopted
for example for k-means, data stream, and density-based clustering.
Clustering features used by BIRCH are simple summary statistics that
can easily be updated with new data: the number of points, the linear
sums, and the sum of squared values. Unfortunately, how the sum of
squares is then used in BIRCH is prone to catastrophic cancellation.
We introduce a replacement cluster feature that does not have this nu-
meric problem, that is not much more expensive to maintain, and which
makes many computations simpler and hence more efficient. These clus-
ter features can also easily be used in other work derived from BIRCH,
such as algorithms for streaming data. In the experiments, we demon-
strate the numerical problem and compare the performance of the orig-
inal algorithm compared to the improved cluster features.

1 Introduction

The BIRCH algorithm [23,24,22] is a widely known cluster analysis approach,
that won the 2006 SIGMOD Test of Time Award. It scales well to big data even
with limited resources because it processes the data as a stream and aggregates
it into a compact summary of the data. BIRCH has inspired many subsequent
works, such as two-step clustering [10], data bubbles [7], and stream clustering
methods such as CluStream [1] and DenStream [9]. Clustering is the unsuper-
vised learning task aimed at discovering potential structure in a data set when
no labeled data or pattern examples are available. It is inherently underspecified
and subjective [12,5] and, unfortunately, also very difficult to evaluate. Instead,
it is best approached as explorative data analysis, generating hypotheses about
potential structures in the data, that afterward need to be verified by some
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other procedure, which is domain-specific and may require a domain expert to
inspect the results. Many clustering algorithms and evaluation measures have
been proposed with unclear advantages of one over another. Because many of
the underlying problems (e.g., k-means clustering) are NP-hard, we often use
approximation techniques and great concern is directed at the scalability.

Scalability is where the BIRCH algorithm shines. It is a multi-step procedure
for numerical data that first aggregates the data into a tree-based data structure
much smaller than the original data. This condensed representation is then fed
into a clustering method, which now is faster because of the reduced size. The
main contribution of BIRCH is a flexible logic for aggregating the data so that an
informative representation is retained even when the size is reduced substantially.

When studying BIRCH closely, we noticed that it is susceptible to a numerical
problem known as “catastrophic cancellation”. This arises when two large and
similar floating-point values are subtracted: many bits of the significand cancel
out, and only few bits of valid result remain. In this paper, we show how to avoid
this numerical problem and demonstrate that it can arise in real data even at
low dimensionality. We propose a replacement cluster feature tree (BETULA)
that does not suffer from this numeric problem while retaining all functionality.
Furthermore, it is often even easier to use. This structure can easily be integrated
into most (if not all) derived methods, in particular also for data streams.

2 Related Work

The BIRCH algorithm was presented at the SIGMOD conference [23], then ex-
panded in a journal version [24]. Still, both versions omit integral details of the
algorithm (e.g., Eqs. 15 to 17 below to compute distances using cluster features),
which are found only in their technical report [22] or their source code. Never-
theless, the intriguing ideas of the clustering features and the CF-Tree inspired
a plethora of subsequent work. Bradley et al. [6] use the same “clustering fea-
tures” as BIRCH, but call them “sub-cluster sufficient statistics”. The CF-Tree
has also been used for kernel density estimation [25], with a threshold set on the
variance to guarantee approximation quality. In two-step clustering [10], BIRCH
is extended to mixed data, by adding histograms over the categorical variables.

Because BIRCH is sequentially inserting data points into the CF-tree, the
tree construction can be suspended at any time. The leaves can then be pro-
cessed with a clustering algorithm; when new data arrives the tree construction
is continued and we trivially obtain a stream clustering algorithm [15]. CluS-
tream [1] extends this idea with pyramidal time frames to enable the clustering
of parts of the data stream by integrating temporal information. HPStream [2]
extends CluStream to projected/subspace clustering. DenStream [9] uses clus-
tering features for density-based stream clustering to detect clusters of arbitrary
shape (in contrast to earlier methods that focus on k-means-style clustering).
Breunig et al. [8] adopt clustering features to perform hierarchical density-based
OPTICS clustering [3] on large data. The ClusTree [17] combines R-trees with
BIRCH clustering features to process data streams. BICO [13] aims at improv-
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ing the theoretical foundations (and hence, performance guarantees) of BIRCH
by combining it with the concept of coresets. For this, it is necessary to add
reference points to the clustering features and use a strict radius threshold.

3 BIRCH and BETULA

In this section, we will describe the basic BIRCH tree building algorithm, and
introduce the changes made for BETULA to become numerically more reliable.

3.1 BIRCH Clustering Features

The central concept of BIRCH is a summary data structure known as Cluster-
ing Features CFBIRCH=(LS, SS,N). Each clustering feature represents N data
points, summarized using the linear sum vector LS∈Rd (with LSi=

∑
x xi), the

sum of squares SS∈R (originally not a vector, but a scalar SS=
∑

i

∑
x x

2
i ) and

the count N∈N. The center of a clustering feature can be trivially computed as
LS/N . By the algebraic identity Var(X)=E[X2]−E[X]2, BIRCH computes the
variance of a clustering feature as Var(X)= 1

N SS−( 1
N

∑
i LSi)

2. We will discuss
the numerical problems with this approach in Section 3.5.

A new data sample x can be easily integrated into the clustering feature
using CFBIRCH+x=(LS+x, SS+

∑
i x

2
i , N+1). Because all of these are sums, two

clustering features can also easily be combined (c.f., additivity theorem in [23])
CFBIRCH

A +CFBIRCH

B =(LSA+LSB , SSA+SSB , NA+NB). A single data point x can
hence be interpreted as the clustering feature containing (x,

∑
i x

2
i , 1).

3.2 Clustering Feature Tree (CF-Tree)

The cluster features are organized in a depth-balanced tree called CF-Tree. A leaf
stores a set of clustering features (each representing one or many data points),
while the inner nodes store the aggregated clustering features of each of its
children. The tree is built by sequential insertion of data points (or, at a rebuild,
the insertion of earlier clustering features). The insertion leaf is found by choosing
the “nearest” clustering feature at each level (five different definitions of closeness
will be discussed in Section 3.4). Within the leaf node, the data point is added
to the best clustering feature if it is within the merging “threshold”, otherwise
a new clustering feature is added to the leaf. Leaves that exceed a maximum
capacity are split, which can propagate to higher levels of the tree and cause
the tree to grow when the root node overflows. If the tree exceeds the memory
limit, a new tree is built with an increased merging threshold by reinserting
the existing clustering features of the leaf level. After modifying a node, the
aggregated clustering features along the path to the root are updated.

The discussion of BIRCH in textbooks ends with the CF-Tree, although we
do not yet have clusters. This is because the outstanding idea of BIRCH is that
of data aggregation into clustering features, and we can run different clustering
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algorithms afterward. The BIRCH authors mention hierarchical clustering, k-
means, and CLARANS [19]. For best results, we would want to use an algorithm
that not only uses the mean of the clustering feature, but that also uses the
weight and variance. The weight can be fairly easily used in many algorithms,
but the variance is less obvious to integrate. In Section 3.7 we will propose how
to perform Gaussian Mixture Modeling and use the variance information.

3.3 BETULA Cluster Features

The way variance is computed from BIRCH cluster features using the popular
equation Var(X)=E[X2]−E[X]2 is prone to the numerical problem known as
“catastrophic cancellation”. This equation can return zero for non-constant data,
and because of rounding even negative values (and hence, undefined standard
deviation). In the context of BIRCH, we cannot resort to the numerically more
reliable textbook definition for variance, Var(X):= 1

N

∑
(x−µ)2, because this re-

quires two passes over the data set (one to find µ, then one for Var). But we also
cannot just ignore the problem, because not all clustering features will be close
to 0, where the numerical accuracy is not a problem. Schubert and Gertz [20]
discuss methods to compute variance and covariance for weighted data, which
forms the base for our approach. For this, they collect three running statistics,
very similar to the three components of BIRCH clustering features: (i) the sum
of weights, (ii) the weighted mean (centroid vector), and (iii) the weighted sum
of squared deviations from the mean. Clearly (i) corresponds to N in the cluster-

ing feature, (ii) is equivalent to LS/N , but (iii) is S:=
∑

x nx ‖x−µ‖
2

(where nx
is the weight of the data point, often simply 1). Hence, we propose the following
replacement cluster feature for BETULA:

CFBETULA := (n, µ, S) (1)

where n is the aggregated weight of all data points (BETULA also allows for
weighted data samples), µ denotes the current mean vector, and S is the sum
of squared deviations from the mean. The last component can either be a scalar
value as in BIRCH (the sum over all components) or a vector of squared devia-
tions. For our experiments, we chose the latter option; a similar modification to
BIRCH can be found in various publications (e.g., [1,2,9,17,16]). A single data
point of weight nx is equivalent to a cluster feature CFBETULA

x =(nx, x, 0) (be-
cause it has zero deviation from the mean). Similar to the additivity theorem of
BIRCH, we can efficiently combine two BETULA cluster features into one:

nAB = nA + nB (2)

µAB = µA + nB
nAB

(µB − µA) (3)

SAB = SA + SB + nB(µA − µB)(µAB − µB) (4)

The derivation of these equations follows directly from the update equations
for the weighted (co-) variance of [20]. Because their experiments indicate that
using the sum of squared deviations, S:=

∑
x nx(x−µ)2 has slight computational

advantages, we follow suit. We could also have stored Var =S/n instead (we did
not measure a noticeable performance difference between these two options).
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3.4 Distance and Absorption Measures

The BIRCH algorithm uses two different measures during tree construction.
The first is a distance between two clustering features, which is used to find
the closest leaf in the tree. The second is an absorption criterion, used together
with a threshold to decide when to add the new data to an existing or as a new
clustering feature. Both measures can be defined on the original data, but also
in terms of the clustering feature values to compute them efficiently.

Distance Measures: BIRCH proposes five different distance measures enumer-
ated as D0 to D4. The first two correspond simply to the Euclidean distance
of the centers (D0) and the Manhattan distance of the centers (D1). The third,
average inter-cluster distance (D2), is based on the quadratic mean distance be-
tween points of different clusters, while the average intra-cluster distance (D3)
uses the quadratic mean distance within the combined cluster. Variance-increase
distance (D4) is the variance of the resulting cluster minus the variance of the
separated clusters. Similar ideas can be found in hierarchical clustering: centroid
linkage (D0, D1), average linkage (D2, D3), and Ward linkage (D4).

D0(A,B) = ‖µA − µB‖ =
√∑

i(µA,i − µB,i)
2 (5)

D1(A,B) = ‖µA − µB‖1 =
∑

i |µA,i − µB,i| (6)

D2(A,B) =
√

1
nAnB

∑
x∈A

∑
y∈B ‖x− y‖

2
(7)

D3(A,B) =
√

1
nAB (nAB−1)

∑
x,y∈AB ‖x− y‖

2
(8)

D4(A,B) =

√∑
x∈AB ‖x− µAB‖

2 −
∑

x∈A ‖x− µA‖2 −
∑

x∈B ‖x− µB‖2 (9)

Absorption Criteria: Absorption in BIRCH is based on a second criterion and
a threshold. Conceptually, the threshold can be seen as a maximum radius of a
cluster feature; if adding a point would increase the radius beyond the allowed
maximum, a new cluster feature is created instead of merging. Intuitively, the
radius should be defined as maxx ‖x−µ‖; but this value cannot be efficiently
computed from the summary statistics. Instead, the “radius” can be approxi-
mated using different criteria. In BIRCH, these criteria were defined on a single
clustering feature AB; they are computed by virtually merging two clustering
features and evaluating the criteria on the result. We can easily remove the dis-
tinction between distance and absorption criteria, but one may nevertheless want
to choose them differently (e.g., choosing the nearest leaf by Euclidean distance,
but thresholding on minimum variance), as they serve a different purpose. The
first criterion proposed in BIRCH is called “radius” R (Eq. 10), the second is the
“diameter” D (Eq. 11). Both this “radius” and “diameter” are not maximum
values, but averages: the average distance to the center is (R), and the average
distance of any two points is (D), which happens to be the same as D3(A,B).
Many implementation attempts (such as sklearn’s) of BIRCH simply use the
distance between the two cluster centers instead (E) – this cannot be defined in
the original BIRCH architecture but is easy to add.
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R(AB) = R(A,B) =
√

1
nAB

∑
x∈AB ‖x− µAB‖

2
(10)

D(AB) = D3(A,B) =
√

1
nAB (nAB−1)

∑
x,y∈AB ‖x− y‖

2
(11)

E(A,B) = D0(A,B) = ‖µA − µB‖ (12)

The values of D and R are almost identical (use Eq. 13 below): they differ only
by a factor of 2n

n−1 ; similar to the regular radius and diameter. Because of the
way they are used in BIRCH, we cannot expect them to perform very differently.

3.5 Catastrophic Cancellation in BIRCH

The numerical problem in BIRCH arises from the “textbook” equation for vari-
ance, Var(X)=E[X2]−E[X]2. This equation—while mathematically correct—is
prone to catastrophic cancellation when used with floating-point arithmetic, un-
less E[X]2�E[X2] holds [20]. In clustering, we cannot assume that all clusters
are close to the origin, and the ideal leaves have a small variance and represent
the data by their differences in the mean. Because of this, it may not be sufficient
to center the data globally. Furthermore, we do not know the center beforehand,
and in BIRCH we only want to do a single pass over the data for performance.

Unfortunately, both of the original absorption criteria R and D, as well as
distance measures D2–D4 are computed using above “textbook” equality

Var(X) = 1
2n2

∑
x,y∈X ‖x− y‖

2
= 1

n

∑
x∈X ‖x− µX‖2 (13)

which yields the following equalities for BIRCH (equivalent to n·Var(X)=S)

S =
∑

x∈X
‖x− µX‖2 = 1

2n

∑
x∈X ‖x− y‖

2
= SS − 1

n ‖LS‖
2
. (14)

The BIRCH authors hence proposed to compute these measures (we omit
D0, D1, and E as they do not involve squares) based on clustering features as:

D2(A,B) =
√

1
NANB

(NBSSA +NASSB
!4−2LST

ALSB) (15)

D3(A,B) =
√

2
NA+NB−1 (SSA + SSB

!4− 1
NA+NB

‖LSA + LSB‖2) (16)

D4(A,B) =
√

1
NA
‖LSA‖2 + 1

NB
‖LSB‖2

!4− 1
NA+NB

‖LSA + LSB‖2 (17)

R(AB) =
√

1
NAB

(SSAB
!4− 1
NAB
‖LSAB‖2) (18)

D(AB) =
√

2
NAB−1 (SSAB

!4− 1
NAB
‖LSAB‖2) (19)

The subtractions flagged with a warning symbol !4 can suffer from catastrophic
cancellation and hence numerical problems. It may come unexpected that in the
“variance increase” equation (D4) all SS terms cancel out, and we only get the
vector product of the linear sums, but this is the Konig-Huygens theorem.
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The effect of the catastrophic cancellation usually leads to an underestima-
tion of the actual variance, and hence of the distances. Because of this, data
points may be assigned to the wrong branch or node. While the result will not
be completely off, it is easy to avoid these problems in the first place. More severe
problems arise when using the resulting variance in the subsequent steps, such
as in clustering. Because most implementations of BIRCH only use the centers
of the leaf entries for clustering (e.g., sklearn does not even use the weight, and
only supports Euclidean distance D0), this has not been observed frequently.

Much of the later work based on BIRCH is prone to the same problem in one
way or another. In CF-kernel density estimation [25], the variance is bounded
to guarantee approximation quality – underestimating the variance invalidates
this guarantee. The (diagonal) Mahalanobis distance used in [6] divides by the
standard deviation, which can become 0 due to instabilities; the division tends
to amplify the errors. CluStream [1] uses the standard deviation of the arrival
times, estimated with the unstable equation. HPStream [2] relies on per attribute
standard deviations for subspace clustering. DenStream [9] uses the radius R
to estimate density, while data bubbles [8] rely on the standard deviation to
estimate the extent. ClusTree [17] estimates the variance in this unstable way.
All of these methods can easily be modified to use BETULA cluster features.

Using the improved BETULA cluster features introduced in Section 3.3,
which we will simply denote by CF, we can easily avoid these numerical prob-
lems, because these features directly aggregate the squared errors instead of the
sum of squares, as previously used for online estimation of variance [20].

3.6 Improved Distance Computations

In BETULA cluster features, we use the mean µ instead of the linear sum because
this makes the subsequent operations more efficient (and elegant). The update
equations for merging CFs also involve the mean (c.f. Eq. 4), and we can now
compute the BIRCH distances in a more numerically stable way. Using BETULA
cluster features CF=(n, µ, S), and Eq. (14), we can compute the distances and
absorption criteria now as follows (the derivation is included in the arXiv draft):

D0(A,B) = ‖µA − µB‖ (20)

D1(A,B) = ‖µA − µB‖1 (21)

D2(A,B) =
√

1
nA
SA + 1

nB
SB + ‖µA − µB‖2 (22)

D3(A,B) =
√

2
nAB (nAB−1) (nAB (SA + SB) + nAnB ‖µA − µB‖2) (23)

D4(A,B) =
√

nAnB
nAB
‖µA − µB‖2 (24)

RAB =
√

1
nAB

SAB =
√

1
nAB

(SA + SB + nA·nB
nAB
‖µA − µB‖2) (25)

DAB =
√

2
(nAB−1)SAB = D3(A,B) (26)

With these numerically more stable equations, we can build a CF-Tree using
BETULA cluster features instead of the original BIRCH clustering features.
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3.7 Gaussian Mixture Modeling with BETULA Cluster Features

Gaussian Mixture Modeling (GMM) with the EM algorithm [11] is a popular,
but fairly expensive clustering algorithm. Every iteration, the probability den-
sity functions (pdfs) of each Gaussian are evaluated at every data point, then
the distribution parameters are updated based on all points weighted by their
probabilities. Because this is a soft clustering, a tolerance threshold or an itera-
tion limit are used for convergence. Formally, the method is linear in the number
of data points, but in practice, it is fairly expensive because of the many pdfs to
compute and the number of iterations. To scale this algorithm to large data sets
(large n) as well as many clusters k, it is beneficial to use a data summarization
technique such as BIRCH or BETULA. Several variations of GMM exist: we can
restrict cluster shapes and we can have independent or shared model parameters.
MAP estimation can be employed to improve the robustness [14], because there
are other numerical pitfalls that can lead to degenerate clusters. We only con-
sider some of the more popular variants in this work: the spherical model with
varying weight and identical volume in each dimension (IGMM), the diagonal
model with varying weight and different volume in each dimension (DGMM),
and the fully variable model that models covariance (CGMM). If we only have a
scalar for SS, then this is well-suited for the simplest model: A spherical model,
in which the direction of variance does not matter. When using a vector for S,
we can incorporate this per-axis information into the cluster models. For the
arbitrarily oriented model, we would need to use a covariance in each cluster
feature. This is possible using the corresponding equations for the covariance of

[20], but the memory requirement increases to 1+d+
(
d
2

)
= 1+d(d+1)

2 values per
cluster feature. Because of this, we do not include this in the experiments.

For clustering, the main tree structure is usually discarded, and only the
cluster features within the leaf nodes are kept. For the initialization of the algo-
rithm, we apply the kmeans++ [4] initialization on the leaf entries. Afterward,
the Gaussian Mixture Modeling algorithm is executed.

In classic GMM, we usually process a single data sample at a time. When
processing cluster features, these represent multiple objects. To improve the
quality of the clustering, rather than just using the cluster mean to represent
a Cluster Feature, we use the Gaussian distribution of the data in the CF,
which we assume is better (at least for GMM). To estimate the responsibilities
of each cluster for each clustering we then use

∫
x
N (x|µ1, σ

2
1)N (x|µ2, σ

2
2)dx =

N (µ1|µ2, σ
2
1+σ2

2). Using the law of total probability, these values are normalized
to sum to 1, exactly as in the usual EM procedure. When updating the cluster
models, the weight of the cluster features is trivially usable as additional weight,
and we can update the model variance using Eq. (4).

By utilizing BETULA cluster features and EM-GMM it is possible to clus-
ter big data sets with limited memory and high numerical stability as shown
in Section 4. It is also possible to distribute this procedure into a cluster by
partitioning the data and aggregating the models of all nodes (c.f. [20]).
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4 Evaluation

We compare the following alternative implementations of GMM:
Textbook Standard EM [11] using the equation E[X2]−E[X]2

Stable Numerically stable EM implementation (from ELKI [21,20])
BIRCH EM-style using the original BIRCH clustering features
BETULA EM-style using our new BETULA cluster features

The evaluation of clustering algorithms is inherently difficult because they are
used in an unsupervised context, where no labeled data is available. Real data
is usually dirty and contains undesirable artifacts (such as anomalies, duplicate
values, and discretization effects) that can cause problems for methods that
assume continuous data. GMM is no exception: e.g., constant attributes will
break many implementations. In these experiments, we do not aim at showing the
superiority of Gaussian Mixture Modeling over other approaches. The limitations
of it are well understood, in particular when data has non-convex clusters.

Instead, we focus on the following research questions:
RQ1 How numerically (un-)stable is BIRCH, does BETULA help?
RQ2 Is the quality of BETULA comparable with BIRCH and regular GMM?
RQ3 How does BETULA scale with data set size (and compare to BIRCH)?
RQ4 Are the results applicable to real data?

4.1 Experimental Setup

We modify the existing implementations of BIRCH and GMM clustering of ELKI
0.7.5 [21]. By keeping most of the code shared, we try to minimize the effects
caused by implementation differences, as recommended for comparing algorithms
[18]. All computations are executed on a small cluster with Intel E5-2697v2
CPUs, we do not use multithreading, and we repeated each experiment 10 times
with varying random seeds and data input order, and give the average results.
All the CF-Trees are built using the variance-increase distance (D4, Eq. 9) in
combination with the radius absorption criterion (R, Eq. 10). This combination
yields subclusters with low variance as input for the GMM clustering. We do
not present results with other distances and absorption criteria here because of
redundancy; they were similar. The size of CF-Trees is by default limited to 5000
leaf entries unless specified differently; when this number is exceeded the tree
is rebuilt with a bigger threshold as in BIRCH. For the GMM clustering step,
all algorithms are initialized by kmeans++ [4]. After 100 iterations or when no
further improvement can be made the optimization is stopped.

4.2 Numerical Stability

First, we demonstrate the numerical instability using synthetic data with two
Gaussian clusters in R3 of 150000 points. Both clusters have standard deviations
[ 43 , 1,

3
4 ], and the only variable in the test is how far the clusters are shifted away

from the mean. For small separation, both clusters overlap but with increasing
distance, the clustering gets trivial until numerical stability comes into play.
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The impact of the increasing distance between the clusters can be seen in
Fig. 1 where all algorithms provide good results until first the Textbook IGMM
implementation at 5·106 and then BIRCH IGMM at 2·107 begin to deteriorate.
The degeneration of BIRCH IGMM begins a bit later than Textbook IGMM
because of the aggregation in the CF-Tree helping a bit, but it then fails even
worse. A deterioration at 107 is to be expected from double-precision because of
the squared values; with single-precision floating-point, it is to be expected to
occur at a separation of 103. Both the “Stable” regular GMM and BETULA are
not affected and solve this idealized toy problem without difficulties (RQ1).

4.3 Quality Comparison on Synthetic Data

We now address the question of result quality (RQ2) in a scenario where all
algorithms are stable. For the evaluation, two synthetic data sets are used, which
are similar to data used for the evaluation of the original BIRCH algorithm [23]
but larger and with increased variability. We use the data generator of ELKI [21],
which has a convenient size multiplier parameter for this experiment.

The first data set is called “Grid” and consists of a 10 by 10 grid of clusters
with a distance of 5 between the means of the clusters on each axis. Each cluster
consists of 10000 points with a variance per attribute randomly drawn from
N (1, 0.25). The second data set, “Random”, consists of 100 clusters in a 50 by 50
area with the cluster means distributed by Halton sampling, which produces
a pseudo-random uniform distribution. The variance of each cluster is again
specified by a normal distribution N (1, 0.15). This time the size of each cluster
varies and is randomly drawn from between 5000 and 15000 points.

Fig. 2 shows the log-likelihood of the models on these data sets. For both, it
can be seen that the data set size has next to no influence on the quality of the fit.
The models with diagonal variance (Stable DGMM and BETULA DGMM) pro-
duce a better fit than the models that are restricted to using the same variance in
each attribute. On the “Random” data set, all IGMM approaches perform sim-
ilar (as expected). On the “Grid” data set, both BETULA IGMM and BIRCH
IGMM unexpectedly achieve a higher likelihood than the standard IGMM algo-
rithms. This difference can be explained by the fact that the implementations
using cluster features converge faster (because there are fewer objects) than the
approaches that use the raw data; the latter have not yet converged within the

10−1 100 101 102 103 104 105 106 107 108
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Fig. 1. The log-likelihood goodness of fit of the model with increasing distance between
the clusters demonstrates the numerical instability of some algorithms.
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Fig. 2. Log-Likelihood goodness of fit of the model on both synthetic data sets.
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Fig. 3. Build time with a varying number of leaf entries on the random data set.

maximum number of iterations. However, this experiment is designed to test if
BETULA performs similar to BIRCH on the same test data that the BIRCH
publications used, and to detect programming errors.

4.4 Runtime Evaluation on Synthetic Data

When evaluating the runtime of BETULA with GMM clustering two measure-
ments are of interest: The time to build the CF-Tree only, and the time for the
entire clustering procedure. Fig. 3 shows the time BETULA and BIRCH need to
build the CF-Tree for various tree sizes. It can be seen that the time for building
the tree increases with the size of the data set and also with the size of the tree
due to an increasing number of distance calculations for the insertion of new
points. The construction time for BETULA is larger than for BIRCH because
this implementation uses a vector for storing the variances, while the BIRCH
implementation uses only a scalar; but the tree construction is only a small part
of the total time as we will see next.

When looking at the complete runtime of BIRCH (respectively BETULA)
including GMM clustering, shown in Fig. 4, we can see that the standard GMM
algorithms have a much higher runtime by a factor of 18 to 52 on this data set,
due to the compression achieved by the CF-Tree (which improves with data set
size). We use a log-log plot to see the differences between BIRCH and BETULA,
which perform very similar (RQ3). BETULA is up to 5% faster than BIRCH—
despite using a vector to store variances—because the BETULA cluster features
can be used directly for clustering, while more additional computations are nec-
essary with BIRCH clustering features to obtain mean and variance on the fly.
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Fig. 5. Log-Likelihood goodness of fit of the models and runtime on the traffic accident
data with 15000 leaf entries (Stable GMM only up to 50 clusters because of runtime).

4.5 Clustering Real Data

To test the algorithm on real data, we use the location information of the UK
“Road Safety Data” from 1979 to 2004 from data.gov.uk.1 This data set has
about 6.2 million entries and contains data on road accidents from Great Britain.
The location information in this data set is given in the OSGR grid reference
system which is only used in Great Britain; which we convert to the appropri-
ate UTM coordinate system. For this experiment, we reduced the cluster feature
precision from double precision to single precision in both BIRCH and BETULA
to demonstrate the numerical instabilities on real data. The regular GMM clus-
tering is performed with double precision to get a more precise reference value.

Fig. 5 shows that Stable DGMM and Stable IGMM achieve a better fit
to the data than the CF-Tree based approximations (which is to be expected,
given that they use the individual points and double precision). However, the
runtime of this method is much higher, and hence it is only computed up to
k=50 clusters. BETULA with DGMM and IGMM clustering obtain only slightly
worse results, showing that the BETULA cluster features provide a reasonably
close approximation of the data. BIRCH IGMM on the other hand shows its
numerical instabilities and with an increasing number of clusters, the quality
deteriorates compared to BETULA. For numerous clusters (and a large value
makes sense on this data set), BETULA with DGMM delivers the best results
at an acceptable run time: As seen in Fig. 5, all GMM with Stable, BIRCH, and

1 https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f
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Fig. 6. Convex hulls of clusters with BETULA DGMM on the traffic accident data
with 100 clusters (three clusters omitted for a cleaner visualization).

BETULA scale approximately linear in the number of clusters k; but because the
CF-Trees reduce the data set from 6.2 million to at most 15000 cluster features
(a factor of over 400), we obtain good results at a much smaller run time than
with regular Stable DGMM or IGMM (RQ4).

Fig. 6 shows the convex hulls and cluster centroids of an exemplary clus-
tering of the traffic data set with k=100 clusters, using BETULA DGMM and
visualized with ELKI. We removed three clusters containing only input data er-
rors to improve readability. The shape of Great Britain can be recognized; small
and dense clusters are found around the larger British cities, especially London.
Larger clusters with lower density on the other hand cover rural areas with fewer
accidents (it is typical behavior of GMM to nest dense clusters with low variance
inside “background” clusters with high variance and fewer data points).

5 Conclusion

Big data analysis and data stream clustering are hot topics in today’s research.
The CF-Tree of BIRCH is a popular technique for this that inspired many sub-
sequent works. Recently, the reliability of machine learning is receiving increased
attention; unfortunately, we found that “catastrophic cancellation” is a major
problem when calculating variances in BIRCH and derived methods, which can
cause the results to deteriorate.

In this article, we proposed BETULA cluster features, that can serve as a
drop-in replacement for BIRCH. These do no longer exhibit this problem as they
avoid using the unstable equation, at a negligible performance difference. We also
show how to use BETULA to accelerate Gaussian Mixture Modeling, while using
the variance information from the cluster features for improved quality, compared
to the standard approach of only using the centroids of each leaf entry.
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A Derivation of the BETULA Distance Criteria

The derivations rely on the following two equivalences:∑n

i=1

∑n

j=1
‖xi−xj‖2 = 2n

∑n

i=1
‖xi−µ‖2

SAB = SA + SB + nAnB

nA+nB
‖µA−µB‖2

We can now derive the following equations to compute the distances using
BETULA cluster features. First, average inter-cluster distance:

D2(A,B)2 = 1
nAnB

∑
x∈A

∑
y∈B
‖x−y‖2

= 1
2nAnB

(∑
x,y∈AB

‖x−y‖2 −
∑

x,y∈A
‖x−y‖2 −

∑
x,y∈B

‖x−y‖2
)

= 1
nAnB

(
nAB

∑
x∈AB

‖x−µ‖2 − nA
∑

x∈A
‖x−µ‖2 − nB

∑
x∈B
‖x−µ‖2

)
= 1

nAnB
(nABSAB − nASA − SB)

= 1
nAnB

(
nAB

(
SA + SB + nAnB

nA+nB
‖µA−µB‖2

)
− nASA − SB

)
= nB

nAnB
SA + nA

nAnB
SB + nAnB

nAnB
‖µA−µB‖2

= 1
nA
SA + 1

nB
SB + ‖µA−µB‖2

Second, average intra-cluster distance:

D3(A,B)2 = 1
nAB (nAB−1)

∑
x,y∈AB

‖x−y‖2 = 2
nAB (nAB−1)nAB

∑
x∈AB

‖x−µ‖2

= 2
nAB (nAB−1)nABSAB

= 2
nAB (nAB−1)nAB

(
SA + SB + nAnB

nAB
‖µA−µB‖2

)
= 2

nAB (nAB−1) (nAB (SA + SB) + nAnB ‖µA−µB‖2)

Third, variance-increase distance:

D4(A,B)2 =
∑

x∈AB
‖x−µAB‖2 −

∑
x∈A
‖x−µA‖2 −

∑
x∈B
‖x−µB‖2

= SAB − SA − SB = SA + SB + nAnB

nAB
‖µA−µB‖2 − SA − SB

= nAnB
nAB
‖µA−µB‖2

Last, radius (average distance to the center):

R(A,B)2 = 1
nAB

∑
x∈AB

‖x−µAB‖2 = 1
nAB

SAB

= 1
nAB

(SA + SB + nA·nB
nAB
‖µA−µB‖2)

We do not provide derivations for Euclidean distanceD0, Manhattan distance
D1, as these can trivially be computed from the cluster means µ using the
standard definitions of these distances. The diameter D is equivalent to D3.



16 A. Lang and E. Schubert

B Derivation of the BIRCH Distance Criteria

The derivations rely on the following equivalence:

1
n

∑n

i=1
‖x−µ‖2 = Var(X2) = E(X2)− E(X)2 = 1

nSS − ‖
LS
n ‖

2

Using this—numerically problematic—equivalence we can reproduce the equa-
tions used in the original BIRCH algorithm [22]:

D2(A,B)2 = 1
nAnB

∑
x∈A

∑
y∈B
‖x−y‖2

= 1
2nAnB

(∑
x,y∈AB

‖x−y‖2 −
∑

x,y∈A
‖x−y‖2 −

∑
x,y∈B

‖x−y‖2
)

= 1
nAnB

(
nAB

∑
x∈AB

‖x−µ‖2 − nA
∑

x∈A
‖x−µ‖2 − nB

∑
x∈B
‖x−µ‖2

)
= 1

nAnB

(
(nABSSAB − ‖LSAB‖2)− (nASSA − ‖LSA‖2)− (nBSSB − ‖LSB‖2)

)
= 1

nAnB

(
nBSSA + nASSB + (‖LSA‖2 + ‖LSB‖2 − ‖LSA + LSB‖2)

)
= 1

nAnB
(nBSSA + nASSB − 2LST

ALSB)

D3(A,B)2 = 1
nAB (nAB−1)

∑
x,y∈AB

‖x−y‖2 = 2nAB

nAB (nAB−1)

∑
x∈AB

‖x−µ‖2

= 2
nAB−1

(
SSAB − nAB ‖LSAB

nAB
‖2
)

= 2
nA+nB−1 (SSA + SSB − 1

nA+nB
‖LSA+LSB‖2)

D4(A,B)2 =
∑

x∈AB
‖x−µAB‖2 −

∑
x∈A
‖x−µA‖2 −

∑
x∈B
‖x−µB‖2

= SSAB − 1
nAB
‖LSAB‖2 −

(
SSA − 1

nA
‖LSA‖2

)
−
(
SSB − 1

nB
‖LSB‖2

)
= SSAB − SSA − SSB + 1

nA
‖LSA‖2 + 1

nB
‖LSB‖2 − 1

nAB
‖LSAB‖2

= 1
nA
‖LSA‖2 + 1

nB
‖LSB‖2 − 1

nA+nB
‖LSA+LSB‖2

R(A,B)2 = 1
nAB

∑
x∈AB

‖x−µAB‖2 = 1
nAB

SSAB − ‖LSAB

nAB
‖2

= 1
nAB

(SSAB − 1
nAB
‖LSAB‖2)
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