2009.13836v1 [cs.CV] 29 Sep 2020

arxXiv

SIR: Similar Image Retrieval for Product Search
in E-Commerce

Theban Stanley!, Nihar Vanjara', Yanxin Pan', Ekaterina Pirogoval, Swagata
Chakraborty!, and Abon Chaudhuri!

Walmart Labs, Sunnyvale CA, USA
theban.stanley,yanxin.pan,achaudhurijO@walmartlabs.com
Y,y P

Abstract. We present a similar image retrieval (SIR) platform that is
used to quickly discover visually similar products in a catalog of mil-
lions. Given the size, diversity, and dynamism of our catalog, product
search poses many challenges. It can be addressed by building super-
vised models to tagging product images with labels representing themes
and later retrieving them by labels. This approach suffices for common
and perennial themes like “white shirt” or “lifestyle image of TV”. It
does not work for new themes such as “e-cigarettes”, hard-to-define ones
such as “image with a promotional badge”, or the ones with short rel-
evance span such as “Halloween costumes”. SIR is ideal for such cases
because it allows us to search by an example, not a pre-defined theme.
We describe the steps - embedding computation, encoding, and indexing
- that power the approximate nearest neighbor search back-end. We also
highlight two applications of SIR. The first one is related to the detection
of products with various types of potentially objectionable themes. This
application is run with a sense of urgency, hence the typical time frame
to train and bootstrap a model is not permitted. Also, these themes are
often short-lived based on current trends, hence spending resources to
build a lasting model is not justified. The second application is a variant
item detection system where SIR helps discover visual variants that are
hard to find through text search. We analyze the performance of SIR in
the context of these applications.

1 Introduction

Product data in catalogs owned by online retailers consist of text (title-description
etc.), key-value pairs (attributes), and images. A number of internal systems and
customer-facing applications leverage images to search and discover product(s)
of interest. In some cases, the inherent nature of the application warrants a
search through images. Also, the results of an image search usually complement
that of a text search in most use cases.

In this paper, we present a visual similarity-based product search and re-
trieval system built and deployed to address a number of business use cases at
Walmart. Image search has come a long way with the recent advances in deep
learning. However, building such a system that has the ability to scan through

2 T. Stanley et al.

millions of images in a few seconds is a challenging task. The deep learning based
fingerprints (or embeddings) created from images contain rich and complex infor-
mation, but creating them is a compute-intensive task until GPUs are available
in excess. Creating a search index on top of such large floating point arrays is
not straightforward either. We present in this paper our process of encoding
the embeddings so that they lend themselves well to popular search indexes like
Elasticsearch and can be used to retrieve approximate nearest neighbors.

Our system is currently used in two business-critical applications. In this
application-focused paper, we highlight how image similarity search plays a cen-
tral role such applications.

— Offensive or non-compliant product search: The quality and com-
pliance of our catalog are maintained through scheduled and on-demand
searches for potentially offensive products. This discovery process demands
a quick turnaround which makes the path of building supervised classifiers
unattractive. Rather, a search tool that would accept one or a few known
examples as a query and return more products with similar images is needed.

— Variant grouping: In this classic e-commerce problem, items varying by
color, size etc. are grouped together and presented to the customer at once
on a single page. To create such groups from the catalog, we often start with
a seed item and try to limit the search space to a pool of similar items. This
pool of similar candidates can be created by text or image search or both.
Our experiments suggest that image search often retrieves candidates that
complement the ones retrieved by text search.

Our system SIR has the potential to be used in other applications as well. With
visual exploration emerging as an upcoming trend in retail, our image search
index based on catalog product images can eventually become the back-end
of a customer-facing visual search system. Also, SIR is used by data scientists
to augment their training datasets with similar images. They often deal with
machine learning problems where the data distribution across classes is highly
skewed. This tool helps find training examples for poorly represented classes.
We optimize SIR for two objectives: search accuracy and query performance.
We achieve high search accuracy by finding the most optimal deep learning
based embedding after examining a few candidates. We achieve near real-time
performance by encoding and indexing those embeddings in a scalable manner.
The following sections of the paper delve into the technical details of the system
and showcase its performance with appealing case studies of real applications.

2 Related Work

In recent years, content-based image retrieval from large data sets has bifurcated
into two distinct approaches. Systems like FAISS [12] and NMSLib [13] treat
embeddings as first class citizens. At the time of this writing, these systems are
typically scaled vertically by taking advantage of GPU based parallelisms. On
the other hand, the older, mature search systems like Elasticsearch and Solr come

SIR: Similar Image Retrieval for Product Search in E-Commerce 3

with built-in support for scaling text-based searches to millions of documents.
The above two approaches have been empirically compared by Mu et al. [I5]. As
combining image and text searches(multi-modality) was an integral part of our
overall solution, we decided on leveraging the second approach. Also, given the
size of our catalog, a distributed system with in-built sharding was preferred.

Many state-of-the-art image retrieval systems rely on very high dimensional
features, known as embeddings extracted either from a pre-trained network or by
fine-tuning a deep neural network [2]. Our system has experimented with a num-
ber of popular models such as VGG16 [17], Resnet50-v2 [I0], Inception-v2 [I§]
and EfficientNet [I9]. Deep learning based hashing, binarizing or a combination
of them [23[4lJ3] are applied to the embeddings to reduce their storage cost and
to improve the retrieval performance of indexes built on them.

From core functionality perspective, our system is a close neighbor to the
visual search systems developed by various e-commerce companies [22[200TT].
However, a very important difference between those and SIR is that we apply
our system to internal stakeholders; hence, the user interaction flow and other
design choices are optimized for them. The actions taken with our system’s
results are very different from that of customer-facing visual search platforms.

3 Technical Details

The core of the system (Figure revolves around fingerprinting every image
to capture salient features and persisting it in a search index that would allow
for efficient search and retrieval of nearest neighbors. We have the ability to use
shallow fingerprinting techniques like phash [2I] or deep learning based embed-
dings [I7]. Most of our use cases require the ability to be invariant to slight
changes in the image including positional and rotational variations. Also, the
deeper and semantic aspects to embedding based fingerprinting was preferred.

3.1 Embedding Generation

In this step, we convert each image into a fingerprint or signature or unique
descriptor. Under the hood, the fingerprints are essentially embeddings computed
from a suitable deep neural network. We have experimented with a large number
of techniques for embedding generation and settled down on VGG16 as our
primary network. The embeddings are taken off the final fully connected layer

of VGG16.

3.2 Index Creation

A typical embedding is a high dimensional vector consisting of floating point
numbers. At search time, both the high dimensionality and the need to numer-
ous floating point comparisons are big hindrances to a scalable, near real-time
implementation. In order to solve this, we employ a variant of locality sensitive

4 T. Stanley et al.

Image
Data Stream //’/,, ,,, N

1

| e

Image :

Fingerprinter Locality . |

(Deep Sensitive Binary subcodes [— Elasticsearch | |

embedding Hashing ' Cluster !

computation) i :

|

Image Pre-processor. /

__ ,

7 ST TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT T N = AN

Search Interface

I

AAAAl

i T Rest Search and
i ‘ L | ‘ A — API — Retrieval

LarLL

Fig. 1: System architecture of similar image retrieval tool (SIR). The top block
outlines the back-end process of computing, encoding, and indexing embeddings.
The bottom block shows the search interface.

hashing (LSH) [9] that binarizes the embedding vector by partitioning the em-
bedding space using random projections. By constraining the dimensionality of
this new binarized space, we can also mimic the effects of dimensionality reduc-
tion on the scalability of the search system. In its binarized form, the embeddings
are further split into smaller subcodes [16] and ingested into the Elasticsearch
index (Figure . The subcoding enables us to take advantage of the pigeonhole
principle and enforce early abandonment of search candidates which in turn helps
us achieve sub-linear search times [16]. At retrieval time, we also take advantage
of Elasticsearch’s ability to compute efficient hamming distance calculations in
the form of bit operations.

Our product catalog is an ever-changing system. The business applications
focus mostly on the images that were added to the catalog in last few weeks.
Hence, we have designed the index creation as a rolling process so that the new
and recently updated images are always indexed. The current deployed system
listens to a Kafka [I] topic that streams new and updated images. On receiving
an image, we compute its embedding, transform it into the suitable format and
store in Elasticsearch [7]. A rolling index (last 3 months) of newly created images
is maintained for subsequent search and retrieval.

The rolling nature of the application makes hash-based indexing a prefer-
able choice over techniques that learn representations collectively from a static
dataset such as principal component analysis (PCA). As the catalog changes, the
optimal principal components change as well, requiring frequent re-computation
of them.

SIR: Similar Image Retrieval for Product Search in E-Commerce 5

1
4
0|z
olg(°®
Q
1 m
Binarization using random
projections . . .
VGG16-fcl : . Indexing
P > n m _ .
zeR {0,13"3b= | oo
Pl e (mm. ‘ : ‘
L]
: ‘mmm W o, Elstic search
¢ V/ 115 Cluster
?
1|18/ 7
Q.
1 o

Fig. 2: Process of generation of subcodes from an image embedding followed by
index creation on Elasticsearch.

3.3 Image Retrieval

In the retrieval phase, a query image (also called seed image) is provided to the
system through the front end. In the back end, the query image is converted into
an embedding and its nearest neighbors are retrieved from the indexed store. The
retrieved images are presented in a grid in order of similarity with the query.
Each result image is shown with a checkbox, allowing the user to select only the
relevant ones from the grid.

4 Applications

SIR is designed as a generic image-based similarity platform. The analysis of
the core algorithm can be found in Mu et al. [I6]. In this paper, we focus on
two implementations of SIR deployed to address two business application. Its
performance is a function of a number of factors including the data on which
the index is created. Hence, we present the system’s performance in the context
of specific applications.

4.1 Non-compliant Product Detection

In a large company like Walmart, it is a common practice to identify offen-
sive themes in products and mark them on a regular basis. Given the size and
the diversity of our catalog, this daunting task is akin to finding a needle in a
haystack. Product search deals with two distinct types of themes. The first one
is characterized by well-defined requirements, with a decent availability of train-
ing data. Also, these themes are usually relevant throughout the year. Hence, we
address this type of themes by building supervised models [5]8]. The second type
of themes is characterized by ill-defined requirements. They are usually volatile
and relevant for a short period of time (e.g. unauthorized sale of products at
a specific time of the year). Given the sense of urgency which they come with,
training and bootstrapping a new model is often too slow. Also, only one or two

6 T. Stanley et al.

examples are usually available, hence finding enough data for training a model
is nearly impossible. SIR is an ideal solution for addressing these ephemeral
themes. We have built and deployed a platform with SIR at the core to address
such issues. The platform consists of following two modes of operation:

— Streaming: The new products that get added to our catalog need to be
constantly monitored for various issues. We provide a version of SIR that
leverages the image similarity technique described in Section [3| to quickly
identify such issues in new products. We accomplish this by listening to
triggers that are generated as new products get ingested into our catalog.
We fingerprint each new product and store them in an Elasticsearch index.
The index is engineered to have a rolling window (currently set at past 3
months) of new products.

— Full Catalog Scan: In addition of checking new products, business often
needs to scan large parts of the catalog to find products similar to an example
at hand. For this purpose, we provide a portal where an analyst can define
rules based on image and text. An example rule would be an image of an
e-cigarette and a filter that says “product title contains e-cigarette”. We use
these rules to fetch parts of the catalog and then scan them in more detail.
The fingerprinting technique discussed in Section [3]is used in two distinct
ways in this portal. Simulation: Given a rule, we first scan a rolling index
of sampled products to provide real-time feedback on the effectiveness of a
rule as it get defined by the analyst. This is accomplished by maintaining
an index of a good representation of the catalog. The simulation results help
the analyst fine tune her rule and also the similarity thresholds that would
lead to expected precision and recall. Sweep: Once the simulation is done,
a full-fledged scan of the catalog is triggered, preferably on a GPU cluster,
where we stream and compare every product to the set of finalized rules
defined by the analyst. Empirically, the combination of image fingerprinting
and text based filtering has proven to be very effective in identifying and
flagging offensive products.

Analysis of Search Quality We present the precision-recall characteristics of
the image similarity technique in the context of our trust and safety application.

Given an application, search quality of the image similarity technique is de-
pendent on two factors: the model used to generate embeddings and the level of
binarization. We have repeated the following experiment for five different types
of embeddings. For each embedding type, we populated the Elasticsearch with
the embeddings from 1.5 million images of top-selling products. In order to test,
we also ingested 10000 offensive images that were related to 3600 query images.
For each query image, we compared the retrieved results against the ground
truth to compute three metrics: Mean R-Precision, Mean Average Precision@K
and Recall.

— R-Precision [6] is useful when the number of relevant images varies from
query to query. For example, if R images are relevant to a query image, R-

SIR: Similar Image Retrieval for Product Search in E-Commerce 7

precision (r/R) is computed based only on the top R images returned by the
system. Mean R-Precision is the average of R-Precisions of all the queries.

— Precision@K [I4] is computed based on the first K returned results. Average
Precision@K is the average of AP for 1 to K. Average precision takes into
account the position of the relevant documents, making it very useful for
measuring the quality of search systems. Mean average precision@QK is the
average of APQK over all the queries.

— We also compute approximate recall@1000 with the assumption that all the
relevant documents are either returned within top 1000 or not.

The results of this experiment is shown in Table [I} As the table indicates, we
achieved best search quality with VGG16 embeddings. We then experimented
with two binarized variations of VGG16 to understand the impact of binarization
on search quality. The results, presented in Table[2] indicate that both MAP and
R-Precision is impacted by only about 2% with the subcoded embeddings.

Table 1: Comparison of SIR search quality for different embedding types

Embedding Type MAPQ1|MAPQ5MAP@10|Mean R-Precision|Approx. Recall
VGG16 0.993 |0.79 0.779 0.827 0.989
Inception-v2 0.993 |0.688]0.663 0.711 0.801
ResNet-50v2 0.993 0.774 0.761 0.81 0.986
EfficientNet-b4]0.995]0.592 |0.576 0.62 0.631
Custom 0.992 |0.772]0.76 0.806 0.993

Table 2: Comparison of SIR search quality for different levels of subcodings

Embedding Type MAP@1|MAP@Q5MAP@10|Mean R-Precision|Approx. Recall
VGG16 0.993 |0.79 0.779 0.827 0.989
VGG16 with 512 subcodes|0.993 0.784 0.774 0.824 0.984
VGG16 with 256 subcodes|0.993 [0.772 |0.758 0.806 0.979

Analysis of Query Response Time: We also study the trade-off between
search quality and query performance in the context of the same application. As
Table [3] indicates, The mean query time of VGG16 is higher than Inception-v3
and Resnet50-v2. However, the mean query time reduces by 20% as we switch
to 512 subcodes of VGG16 from original VGG16 embeddings. It reduces by a
massive 70% as we move to 256 subcodes of VGG16. Table [2| has shown that
this performance gain has been achieved with less than 2% reduction in precision
and recall.

8 T. Stanley et al.

Table 3: Comparison of SIR Elastic Search Query times for different embeddings.

Embedding Type

min time (ms)

max time (ms)

mean time (ms)

total time (hrs)

ResNet-50v2
Custom
Inception-v3
VGG16

4764
4448
4227
4892

VGG16 with 512 subcodes|4112
VGG16 with 256 subcodes|1568

5608
5920
5552
6117
4827
1862

5201.644
5458.125
4622.075
5600.235
4481.130
1631.270

5.538
5.500
4.525
5.560
4.449
1.112

Performance Improvement with Text Filters: In real applications, both
image and text (mainly product title) contain information valuable for search.
We have experimented with composite indexes. In this version, we create an
image-based index as described earlier as well as a traditional Elasticsearch index
of textual keywords. At the query retrieval phase, the image search space is first
narrowed down by applying keyword-based text filters. Figure [3]shows the trends
of query performance with and without the text filter. As the data size on which
the indexes are built increases, the benefit of text filters on top of images becomes
apparent. This early but promising result has opened up possibilities of turning
this application into a multi-modal one.

Query Performance

— text filters
no text filters
1034
wn
[

ES

=)

zwn

gs

£

1024 /,/

103 104 10° 106 107

ES index size

Fig. 3: Query performance on different index sizes with and without text based

filtering

SIR: Similar Image Retrieval for Product Search in E-Commerce 9

4.2 Variant Detection

When shopping online, customers expect all item variants, for example, the
same T-shirt in different sizes, on one item page so that they can easily make a
well-informed shopping decision. Incorrect variant assortment in the item pages
could result in poor customer experience and affect GMV due to an increased
bounce rate as customers leave the site without any action. Traditionally, internal
experts have been manually creating, consolidating, and updating the variant
groups. This task is error-prone and time-consuming due to the volume of our
catalog. To increase the variant grouping accuracy and efficiency, we developed
a machine learning system to automatically generate variant suggestions so that
experts only need to review a set of suggested variants instead of exploring the
entire catalog.

This variant grouping system consists of two stages: high-recall stage and
high-precision stage. In the first stage, given a query product, a set of candidate
variants is generated to narrow down the variant search space from the entire
catalog to a few hundreds or thousands of products. In the second stage, high-
precision classifiers are used to identify variants from the candidate set previously
generated. In the first stage, a text similarity search was originally in place to
retrieve candidates with similar product name and descriptions as the reference
item. We deployed an implementation of the similar image retrieval (SIR) system
to retrieve candidates that are visually similar to the reference item. Our hy-
pothesis was that these two retrieval systems would fetch complementary variant
candidates.

Performance Analysis: To test our hypothesis, we measured the performance
of the candidate generation system on a production-level dataset consisting of
about 5,000 groups from thousands of product categories. For each reference
item, we fetched about 1000 image and about 500 text based candidates (this
discrepancy is due to the limitation of the library used to implement the text-
retrieval system) independently and then combined them as well. It turned out
that the recall based on the image-based candidates were already 13% higher
than that of the text-alone retrieval. The recall increased by 24% after combining
text and image-based candidate. Even with the discrepancy mentioned above,
the numbers indicate that the image-based retrievals add significant value to
the system. Figure [g] shows an example where the variant is retrieved in the
image SIR but is missed in text-alone retrieval. Though the text information for
both products are semantically similar, the actual words, phrases, and writing
style are so different that it is challenging for text-alone retrieval system. This
challenge is prevalent in marketplace settings where multiple sellers for a single
product are active. For such cases, product images are less subjective and harder
to modify, hence image-base retrievals are critical.

We take a suggestion of suggestions strategy where a few image candidates
are retrieved for each text candidate. This strategy has two parameters: number
of text-based candidates (shown as NMSLIB neighbors in the plots), namely N
and the number of image-based nearest neighbors for each text-based candidate,

10 T. Stanley et al.

Attribute Reference Product
title Progressive Furniture Melrose Panel Bed Progressive Melrose Queen Panel Bed in Driftwood
image

~ -~
product_id 6DD00201UAIE 6X02L27UZ4V8
brand Progressive Furniture Progressive Furniture
manufacturer Progressive Furniture Progressive Furniture Inc

manufacturer_part_number

P604-94/95/78

P604-34/35/78

model P604-94 P604-34/35/78
size King King
actual_color Multicolor Queen: 85in. Lx 64 in. W x 53 in. H

product_short_description

Surround yourself in the natural beauty of pine. The rustic
Progressive Furniture Melrose Panel Bed will give your
master bedroom a log cabin feel and with a serene setting
comes a more pleasant night’s sleep. This panel bed
includes headboard, footboard, and rails crafted from solid
pine that flaunts its natural woodgrain, color, notches, and
“flaws” that give it unique character. Multiple size options
are available to match your mattress and box springs.

Dimensions

The natural beauty of pine is obvious when allowed to stand
on its own. Melrose was designed to let the wood tell its
own story. Architectural lines and the natural color of pine
provide a unique look. Flaws in the wood are valued and
considered to be of positive character. The flaws create
character and allows the wood to look natural. The bed
features hand applied distressing on rough hewn and planed
pine solids to achieve a natural, vintage look.

Features:

« Finish: Driftwood

* Materials and Construction: Salvaged Pine solids
« Style: Transitional

« Box Spring Required

* Queen Headboard: 64W x 2D x 53H in.
* Queen Footboard: 64W x 2D x 20H in.
* King Headboard: 81W x 2D x 52H in.
* King Footboard: 81W x 2D x 20H in.
* Rails: 81W x 1D x 5H in.
Specifications:
« Overall Product Dimensions: 53" H x 64" W x 85" D
« Overall Product Weight: 89.6 Ibs

Fig.4: The query product (on the right) and the variant candidate (on the left)
have similar product image, but different product text information, especially
the product descriptions. This variant candidate is only retrieved by SIR.

namely K. If we keep increasing N, a single retrieval system tends to saturate
as the blue line shown in Figure [f] The recall increases little even though the
number of searched items is doubled. Our experiment shows that a “suggestion of
suggestions” approach can efficiently break through this saturation. Specifically,
each retrieved text-based candidate becomes the reference item for SIR. The top
K neighbors retrieved in SIR are added into the candidate set. Figure [5| shows
how recall is increased for k=1,2,3,4. Figure [f] shows that this “suggestion of
suggestions” strategy significantly increase the recall that surpass the saturated
point with insignificant increment in the number of fetched candidates. The y-
axis of this plot shows the number of candidates averaged over all the queries
used for testing.

4.3 Visual Examples from Applications

Both the above mentioned applications regularly use SIR to discover products
similar to a query example that is of interest to one of the users. The retrieval
is based on an index of products that entered the catalog in the last one month
or so. Figure [7] showcases a few such examples and corresponding search results.

The top one with a table lamp, Figure shows how SIR retrieves similar
products with subtle variations in shape, size, and color. Such variations either
make them variants of the queried product or help in discovering products with
a certain shape or style catering to the customer’s choice. Figure [7Th] showcases a

SIR: Similar Image Retrieval for Product Search in E-Commerce 11

0700 kAT A A A AT A A A
i
y
£
-’ - - - - - -4
0675 ‘,a ot dm Ak AR AT e AR A A A e At
/
! ‘,‘
0650 ll‘, ‘_‘_‘_’_‘_,.._.1_.+.—rt—a—1—n—1—r1—a
/ ‘/
A e
P
_ 0625 1
8 ”l‘ /‘
;0590 Iy kA A A A A A AR A A A A A
1
] &
!
[
0s75{ 1
‘l
A A nmslib variants
0550 —4= +1 neighbour for neighbour
—4= +2 neighbour for neighbour
0525 —& +3 neighbour for neighbour
i +4 neighbour for neighbour
0 200 400 600 800 1000

NMSLib treshold neighbours

Fig.5: Recall of any retrieval system saturates as we keep increasing number
of candidates. Combining image-based retrieval with text elevates recall signifi-
cantly over a text-alone system.

700
- B o 2k bt e a5)
600 A =
-
,A
A B B ot et S 2t}
» 500 g
2 S .
s
z A~ Ak Ak Ak A A=k A-A
g /& -
& 400 4
2 / ,/
£ A,‘,‘ ah A A A A A A A A A A A A
2 ’
£ 300 £ "
H / A
AL
200 Aot
L0 A
/,/(A A nmslib variants
el = +1 neighbour for neighbour
100 1{/ s —a +2 neighbour for neighbour
‘G =& +3 neighbour for neighbour
ol & +4 neighbour for neighbour
0 200 400 600 800 1000

NMSLib treshold neighbours

Fig.6: Image and text together increases recall of text retrieval system with
relatively small increase in number of candidates fetched.

search for sports t-shirts where variations in the text on the t-shirt are captured.
This is a relatively difficult example since our underlying embeddings were not
trained to detect letters and numbers. However, SIR still identifies the graphic
as a key feature and is able to fetch t-shirts with a similar graphic.

The third example in Figure[7c/is an attempt to find cosmetic products, most
likely coming from different brands. All the results returned are near duplicates
to the query, but not identical.

The last example in Figure [7d] retrieves tablet computers based on an ex-
ample. This example actually highlights a limitation of our system. Since the
underlying embeddings do not recognize the content being shown inside the
screen of the tablet, it retrieved images primarily based on the overall shape of
the object. If the user were looking for other tablets showing similar content on
the screen, this search result would not satisfy her.

12 T. Stanley et al.

p— R E—
- L
: & £ $? T
' ¥ []
v o o ‘
a) Discovery and retrieval of table lamps similar to the query.

W%w %WW%‘

y / % a
,,,,, e T
(=) = - = (=) = o=
12 92 8 12 2
(b) Discovery and retrieval of variants of a sports t-shirt.
E——— _—

e mag|
[T
T |
Bk R
any

i

ALECE T B

]

STEFEFLTE
CEECNEEEE

(d) Retrieval of tablets similar to an example

Fig.7: A number of examples demonstrating product search capability of SIR

SIR: Similar Image Retrieval for Product Search in E-Commerce 13

5 Discussion and Future Work

The focus of this paper is on building systems using an embedding based image
similarity algorithm [16]. Hence, we present the performance of our system in
the context of specific applications. Internal product datasets are used for the
experiments. Even if the exact numbers change a bit when a similar system is
built for another application, we are confident that the key insights will hold
(such as the impact of sub-coding on precision-recall and query performance,
or the benefit of text-based pre-filtering). We also skip the comparison between
deep learning embeddings and conventional image hashes because there is enough
evidence in the literature that conventional image hashes cannot perform nearly
well beyond exact or near duplicated.

The image search platform we have built and deployed is constantly under-
going improvements. On the algorithm side, we are experimenting on making
the embeddings aware of regions of interest so that the users can submit queries
with annotated regions of attention. We intend to upgrade the binarization of
the embeddings to a learnable process using one of the deep hashing networks.
can We also intend to scale the embedding computation and the image search
using serverless compute offerings from various cloud enterprises. More involved
text search is also underway.

6 Conclusion

In this paper, we present a similar image retrieval (SIR) tool designed and de-
ployed to support a number of internal applications that need to discover prod-
ucts from Walmart’s enormous product catalog. The system is developed by
skillfully combining knowledge of deep learning, data management, and user ex-
perience. The core idea behind SIR can be used to build similar visual search
tools for many other domains.

References

1. Apache Software Foundation: Apache kafka. https://kafka.apache.org/ (2011)

2. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image
retrieval (2014)

3. Cao, Y., Long, M., Liu, B., Wang, J.: Deep cauchy hashing for hamming space
retrieval. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 1220-1237 (2018)

4. Cao, Y., Long, M., Wang, J., Liu, S.: Deep visual-semantic quantization for effi-
cient image retrieval. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 916-925 (2017)

5. Chaudhuri, A., Messina, P., Kokkula, S., Subramanian, A., Krishnan, A., Gandhi,
S., Magnani, A., Kandaswamy, V.: A smart system for selection of optimal product
images in e-commerce. CoORR abs/1811.07996 (2018), http://arxiv.org/abs/
1811.07996

6. Craswell, N.: R-Precision, pp. 2453-2453. Springer US, Boston, MA (2009)

https://kafka.apache.org/
http://arxiv.org/abs/1811.07996
http://arxiv.org/abs/1811.07996

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

T. Stanley et al.

Elastic.co: Elasticsearch. https://www.elastic.co/elasticsearch/| (2010)
Gandhi, S., Kokkula, S., Chaudhuri, A., Magnani, A., Stanley, T., Ahmadi, B.,
Kandaswamy, V., Ovenc, O., Mannor, S.: Scalable detection of offensive and non-
compliant content / logo in product images. In: IEEE Winter Conference on Ap-
plications of Computer Vision, WACV 2020, Snowmass Village, CO, USA, March
1-5, 2020. pp. 2236—-2245. IEEE (2020)

Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. pp. 518-529 (1999)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015), http://arxiv.org/abs/1512.03385

Jing, Y., Liu, D.C., Kislyuk, D., Zhai, A., Xu, J., Donahue, J., Tavel, S.: Vi-
sual search at pinterest. CoORR abs/1505.07647 (2015), http://arxiv.org/abs/
1505.07647

Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734 (2017)

Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs (2016)

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to Information Retrieval.
Cambridge University Press, USA (2008)

Mu, C., Yang, B., Yan, Z.: An empirical comparison of FAISS and FENSHSES
for nearest neighbor search in hamming space. CoRR abs/1906.10095 (2019),
http://arxiv.org/abs/1906.10095

Mu, C., Zhao, J., Yang, G., Yang, B., Yan, Z.: Fast and exact nearest neighbor
search in hamming space on full-text search engines (2019)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., Wojna, Z.: Rethinking the in-
ception architecture for computer vision. CoRR abs/1512.00567 (2015), http:
//arxiv.org/abs/1512.00567

Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. CoRR abs/1905.11946 (2019), http://arxiv.org/abs/1905.11946
Yang, F., Kale, A., Bubnov, Y., Stein, L., Wang, Q., Kiapour, M.H., Piramuthu,
R.: Visual search at ebay. CoRR abs/1706.03154 (2017), http://arxiv.org/
abs/1706.03154

Zauner, C.: Implementation and benchmarking of perceptual image hash functions
(2010)

Zhang, Y., Pan, P., Zheng, Y., Zhao, K., Zhang, Y., Ren, X., Jin, R.: Visual search
at alibaba. In: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. p. 9931001. KDD 18 (2018)

Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient sim-
ilarity retrieval. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. p. 24152421. AAAT’16, AAAT Press (2016)

https://www.elastic.co/elasticsearch/
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1505.07647
http://arxiv.org/abs/1505.07647
http://arxiv.org/abs/1906.10095
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1706.03154
http://arxiv.org/abs/1706.03154

	SIR: Similar Image Retrieval for Product Search in E-Commerce

