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Abstract. A Locality-Sensitive Hash (LSH) function is called (r, cr, p1, p2)-sensitive, if two
data-points with a distance less than r collide with probability at least p1 while data points
with a distance greater than cr collide with probability at most p2. These functions form
the basis of the successful Indyk-Motwani algorithm (STOC 1998) for nearest neighbour
problems. In particular one may build a c-approximate nearest neighbour data structure
with query time Õ(nρ/p1) where ρ = log 1/p1

log 1/p2
∈ (0, 1). That is, sub-linear time, as long as p1

is not too small. This is significant since most high dimensional nearest neighbour problems
suffer from the curse of dimensionality, and can’t be solved exact, faster than a brute force
linear-time scan of the database.
Unfortunately, the best LSH functions tend to have very low collision probabilities, p1 and
p2. Including the best functions for Cosine and Jaccard Similarity. This means that the nρ/p1
query time of LSH is often not sub-linear after all, even for approximate nearest neighbours!
In this paper, we improve the general Indyk-Motwani algorithm to reduce the query time of
LSH to Õ(nρ/p1−ρ

1 ) (and the space usage correspondingly.) Since nρpρ−1
1 < n ⇔ p1 > n−1,

our algorithm always obtains sublinear query time, for any collision probabilities at least
1/n. For p1 and p2 small enough, our improvement over all previous methods can be up to

a factor n in both query time and space.
The improvement comes from a simple change to the Indyk-Motwani algorithm, which can
easily be implemented in existing software packages.
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1 Introduction

Locality Sensitive-Hashing (LSH) framework [18] is one of the most efficient approaches to the
nearest neighbour search problem in high dimensional spaces. It comes with theoretical guarantees,
and it has the advantage of easy adaption to nearly any metric or similarity function one might
want to search.

The (r1, r2)-near neighbour problem is defined as follows: Given a set X of points, we build a
data-structure, such that given a query, q we can quickly find a point x ∈ X with distance < r2
to q, or determine that X has no points with distance ≤ r1 to q. Given a solution to this “gap”
problem, one can obtain a r1/r2-approximate nearest neighbour data structure, or even an exact1

solution using known reductions [2,14,17].
For any measure of similarity, the gap problem can be solved by LSH: we find a distribution of

functions H , such that p1 ≥ Prh∼H [h(x) = h(y)] when x and y are similar, and p2 ≤ Prh∼H [h(x) =
h(y)] when x and y are dissimilar. Such a distribution is called (r1, r2, p1, p2)-sensitive. If p1 > p2
the LSH framework gives a data-structure with query time Õ(nρ/p1) for ρ = log 1/p1

log 1/p2

, which is

usually significantly faster than the alternatives.

At least when p1 is not too small.

1 In general we expect the exact problem to be impossible to solve in sub-linear time, given the hardness
results of [5,1]. However for practical datasets it is often possible.
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The two most common families of LSH is Cross-Polytope (or Spherical) LSH [6] for Cosine
similarity and MinHash [11,10] for Jaccard Similarity.

Cross-Polytope is the basis of the Falconn software package [21], and solves the (r, cr)-near

neighbour problem on the sphere in time Õ(n1/c2/p1). Here p1 = d
− τ2

4−τ2 (log d)−Ω(1), where τ =
‖p− q‖2 ∈ [0, 2] is the distance between two close points. We see that already at τ ≈

√
2 (which

corresponds to near orthogonal vectors) the 1/p1 factor results in a factor d slow-down. For larger
τ ∈ (

√
2, 2] the slow-down can grow arbitrary large. Using dimensionality reduction techniques,

like the Johnson Lindenstrauss transform, one may assume d = ε−2 logn at the cost of a factor
1+ ε distortion of the distances. However if ε is just 1/100, the slow-down factor of d is still worse
than, say, n1/2 for datasets of size up to 108, and so if c ≤

√
2 we get that nρ/p1 s larger than n.

So worse than a brute force scan of the database!

The MinHash algorithm was introduced by Broder et al. for the Alta Vista search engine,
but is used today for similarity search on sets in everything from natural language processing to
gene sequencing. MinHash solves the (j1, j2) gap similarity search problem, where j1 ∈ (0, 1) is
the Jaccard Similarity of similar sets, and j2 is that of dissimilar sets, in time Õ(nρ/j1) where

ρ = log 1/j1
log 1/j2

. (In particular MinHash is (j1, j2, j1, j2)-sensitive in the sense defined above.) Now

consider the case j1 = n−1/4 and j2 = n−3/10. This is fairly common as illustrated in fig. 1a. In

this case ρ = log 1/j1
log 1/j2

= 5/6, so we end up with nρ/j1 = n13/12. Again worse than a brute force

scan of the database!

In this paper we reduce the query time of LSH to nρ/p1−ρ
1 , which is less than n for all p1 > 1/n.

In the MinHash example above, we get nρ/p1−ρ
1 = n5/6+1/4(1−5/6) = n7/8. More than a factor n.208

improvement(!) In general the improvement of p−ρ
1 may be as large as a factor of n when p1 and

p2 are both close to 1/n. This is illustrated in fig. 1b.

The improvements to LSH comes from a simple observation: During the algorithm of Indyk
and a certain “amplification” procedure has to be applied logn

log 1/p2

times. When log 1/p2 does not

divide n, which is extremely likely, the amount of amplification has to be approximated by the next
integer. We propose instead an ensemble of LSH tables with different amounts of amplification,
which when analysed sufficiently precisely yields the improvements described above.

1.1 Related Work

We will review various directions in which LSH has been improved and generalized, and how those
results related to what is presented in the present article.

In many cases, the time required to sample and evaluate the hash functions dominate the time
required by LSH. Recent papers [16,12] have reduced the number of distinct calls to the hash
functions which is needed. The most recent paper in the line of work is [12], which reduces the
number of calls to ( logn

log 1/p2

)2/p1. On top of that, however, they still require nρ/p1 work, so the

issue with small p1 isn’t touched upon. In fact, some of the some of the algorithms in [12] increase
the dependency from nρ/p1 to nρ/(p1 − p2).

Other work has sought to generalize the concept of Locality Sensitive Hashing to so-called
Locality Sensitive Filtering, LSF [9]. However, the best work for set similarity search based on
LSF [4,13] still have factors similar in spirit to p−1

1 . E.g., the Chosen Path algorithm in [13] uses
query time Õ(nρ/b1), where b1 is the similarity between close sets.

A third line of work has sought to derandomize LSH. The result is so-called Las Vegas LSH [3,22].
Here the families H are built combinatorially, rather than at random, to guarantee the data struc-
ture always return a near neighbour, when one exists. While these methods don’t have probabilities,
they still end up with similar factors for similar reasons.
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(a) Density plots of pairwise Jaccard Similarities in the datasets studied by Mann et al. [20]. The similarities
are normalized by the dataset sizes, so we can compare the effect of 1/p1 with the effect of nρ. We see that
reasonable values for j1 = p1 range between n−1/3 and n−1/6 on those datasets.
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(b) Saving possible, in query time and space, over classical LSH as a function of p1
and p2. With p1 = n−1/4 and p2 = n−1/3 we save a factor of n3/16 = n.1875.

Fig. 1: Overview over available savings
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As mentioned, the reason p−1
1 shows up in all these different approaches, is that they all rely

on the same amplification procedure, which has to be applied an integer number of times. One
might wonder if tree based methods, which do an adaptive amount of amplification, could get rid
of the 1/p1 dependency. However as evidenced by the classical and current work [8,7,14,15] these
methods still have a factor 1/p1. We leave it open whether this might be avoidable with better
analysis, perhaps inspired by the results in this paper.

2 Preliminaries

Before we give the new LSH algorithm, we will recap the traditional analysis. For a more com-
prehensive introduction to LSH, see the Mining of Massive Datasets book [19], Chapter 3. In the
remainder of the article we will use the notation [n] = {1, . . . , n}.

Assume we are given a (r1, r2, p1, p2)-sensitive LSH family,H , as defined in the introduction. Let
k and L be some integers defined later, and let [m] be the range of the hash functions, h ∈ H . Let
n be an upper bound on the number of points to be inserted. 2 The Indyk-Motwani data-structure
consists of L hash tables, each with mk hash buckets.

To insert a point, x, we draw L · k functions from H , denoted by (hi,j)i∈[L],j∈[k]. In each table
i ∈ [L] we insert x into the bucket keyed by (hi,1(x), hi,2(x), . . . , hi,k(x)). Given a query point q,
the algorithm iterates over the L tables and retrieves the data points hashed into the same buckets
as q. The process stops as soon as a point is found within distance r1 from q.

The algorithm as described has the performance characteristics listed below. Here we assume
the hash functions can be sampled and evaluated in constant time. If this is not the case, one can
use the improvements discussed in the related work.

– Query time: O(L(k + npk2)) = O(nρp−1
1 logn).

– Space: O(nL) = O(n1+ρp−1
1 ) plus the space to store the data points.

– Success probability 99%.

To get these bounds, we have defined k = ⌈ log n
log 1/p2

⌉ and

L = ⌈p−k
1 ⌉ ≤ exp

(

log 1/p1 · ⌈ logn
log 1/p2

⌉
)

+ 1 ≤ nρ/p1 + 1.

It’s clear from this analysis that the p−1
1 factor is only necessary when logn

log 1/p2

is not an integer.

However in those cases it is clearly necessary, since there is no obvious way to make a non-integer
number of function evaluations. We also cannot round k down instead of up, since the number
of false positives would explode: rounding down would result in a factor of p−1

2 instead of p−1
1 —

much worse.

3 LSH with High-Low Tables

The idea of the main algorithm is to create some LSH tables with k rounded down, and some with
k rounded up. We call those respectively “high probability” tables and “low probability” tables.
In short “LSH with High-Low Tables”.

The main theorem is the following:

Theorem 1. Let H be a (r1, r2, p1, p2)-sensitive LSH family, and let ρ = log 1/p1

log 1/p2

. Assume p1 > 1/n

and p2 > 1/n. Then there exists a solution to the (r1, r2)-near neighbour problem with the following

properties:

2 If we don’t know how many points will be inserted, several black box reductions allow transforming LSH
into a dynamic data structure.
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– Query time: O(nρpρ−1
1 logn).

– Space: O(nL) = O(n1+ρpρ−1
1 ) plus the space to store the data points.

– Success probability 99%.

Proof. Assume r1, r2, p1, p2 are given. Define ρ = log 1/p1

log 1/p2

, κ = log n
log 1/p2

, and α = ⌈κ⌉ − κ ∈ [0, 1).

We build ⌊a⌋ + ⌈b⌉ tables (for a, b ≥ 0 to be defined), where the first ⌊a⌋ use the hash function
concatenated ⌊κ⌋ times as keys, and the remaining ⌈b⌉ use it concatenated ⌈κ⌉ times.

The total number of tables to query is then ⌊a⌋+ ⌈b⌉. The expected total number of far points
we have to retrieve is

n(⌊a⌋p⌊κ⌋2 + ⌈b⌉p⌈κ⌉2 ) = n(⌊a⌋pκ−1+α
2 + ⌈b⌉pκ+α

2 )

= ⌊a⌋p−1+α
2 + ⌈b⌉pα2

≤ ap−1+α
2 + (b+ 1)pα2

≤ ap−1+α
2 + bpα2 + 1.

For the second equality, we used the definition of κ: pκ2 = 1/n. We only count the expected number
of points seen that are at least r2 away from the query. This is because the algorithm, like classical
LSH, terminates as soon as it sees a point with distance less than r2.

Given any point in the database within distance r1 we must be able to find it with high enough
probability. This requires that the query and the point shares a hash-bucket in one of the tables.
The probability that this is not the case is

(1− p
⌊κ⌋
1 )⌊a⌋(1− p

⌈κ⌉
1 )⌈b⌉ ≤ (1− p

⌊κ⌋
1 )a−1(1 − p

⌈κ⌉
1 )b

≤ exp(−ap
⌊κ⌋
1 − bp

⌈κ⌉
1 )(1 − p

⌊κ⌋
1 )−1

= exp(−(ap−1+α
1 + bpα1 )n

−ρ)(1− p
⌊κ⌋
1 )−1

≤ exp(−(ap−1+α
1 + bpα1 )n

−ρ) · 2.

For the equality, we used the definition of κ and ρ: pκ1 = pρκ2 = n−ρ. For the last inequality we have
assumed p2 > 1/n so ⌊κ⌋ ≥ 1, and that p1 < 1/2, since otherwise we could just get the theorem
from the classical LSH algorithm.

We now define a, b such that ap−1+α
2 + bpα2 = a + b and ap−1+α

1 + bpα1 = nρ. By the previous
calculations this will guarantee the number of false positives is not more than the number of tables,
and a constant success probability.

We can achieve this by taking

[

a
b

]

=

[

p−1+α
2 − 1 pα2 − 1
p−1+α
1 pα1

]−1 [
0
nρ

]

=
nρ

(p−1+α
2 − 1)pα1 + (1− pα2 )p

−1+α
1

[

1− pα2
p−1+α
2 − 1

]

.

We note that both values are non-negative, since α ∈ [0, 1].
When actually implementing the LSH algorithm width High-Low buckets, these are the values

you should use for the number of respectively the high and low probability tables. That will ensure
you take full advantage of when α is not worst case, and you may do even better than the theorem
assumes.

To complete the theorem we need to prove a+ b ≤ nρpρ−1
1 . For this we bound

a+ b

nρ
=

p−1+α
2 − pα2

(p−1+α
2 − 1)pα1 + (1− pα2 )p

−1+α
1

≤
(

(p1 − p2) log 1/p1
(1 − p1) log p1/p2

)ρ(
(1− p2) log p1/p2
(p1 − p2) log 1/p2

)
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= exp

(

D

(

ρ

∥

∥

∥

∥

1/p1 − 1

1/p2 − 1

))

≤ pρ−1
1 .

Here D(r‖x) = r log r
x +(1−r) log 1−r

1−x is the Kullback-Leibler divergence. The two inequalities are
proven in the Appendix as lemma 1 and lemma 3. The first bound comes from maximizing over α,
so in principle we might be able to do better if κ = logn

log 1/p2

is close to an integer. The second bound

is harder, but the realization that the left hand side can be written on the form of a divergence
helps a lot. The bound is tight up to a factor 2, so no significant improvement is possible.

Finally we can boost the success probability from 1−2/e ≈ 0.26 to 99% by repeating the entire
data-structure 16 times.
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4 Appendix

Lemma 1. For all α ∈ [0, 1] we have

f(α) =
p−1+α
2 − pα2

(p−1+α
2 − 1)pα1 + (1− pα2 )p

−1+α
1

≤
(

(p1 − p2) log 1/p1
(1− p1) log p1/p2

)ρ (
(1− p2) log p1/p2
(p1 − p2) log 1/p2

)

,

where ρ = log 1/p1

log 1/p2

.

Proof. We first show that f(α) is log-concave, which implies it is maximized at the unique α such
that f ′(α) = 0. Log-concavity follows easily by noting

d2 log f(α)

dα2
= −

(1− p1)(p1 − p2)p
1+α
2 (log 1

p2

)2

((1 − p1)p2 + pα2 (p1 − p2))2
≤ 0.

Meanwhile

df(α)

dα
=

p1(1− p2)(p2/p1)
α

((1− p1)p2 + pα2 (p1 − p2))2

[

(p1 − p2)p
α
2 log 1

p1

− (1− p1)p2 log
p2

p1

]

,

which implies f(α) is maximized in

α = log
(1− p1)p2 log

p2

p1

(p1 − p2) log
1
p1

/

log p2.

Plugging into f yields the lemma.

Note that f(α) is not regularly concave as p1 and p2 gets small enough. Hence the use of log-
concavity is necessary.

Next, we state a useful inequality, which is needed for the last proof.

Lemma 2. Let p, r ∈ (0, 1), then

1− 1− p

r
≤ p1/r ≤ pr

1− p(1− r)
.

Proof. We have d2

dp2 p
1/r = p1/r(pr)−2(1− r), so p1/r is convex as a function of p. Since 1− 1−p

r is

it’s tangent (at p = 1) we get the first inequality.
For the second inequality, define g(p) = p1/r/ pr

1−p(1−r) . Then g(1) = 1 and g(p) is non-

decreasing, since

g′(p) = p1/r(pr)−2(1− p)(1 − r) ≥ 0.

This shows that for p ≤ 1 we have p1/r/ pr
1−p(1−r) ≤ 1, which is what we wanted to prove.
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Lemma 3. Let p, r ∈ (0, 1] and let x = 1/p− 1
1/p1/r−1

, then

D(r‖x) ≤ r log r
x ≤ (1 − r) log 1

p , (1)

where D(r‖x) = r log r
x + (1− r) log 1−r

1−x .

Proof. Using the upper bound of lemma 2 it follows directly that x ∈ (0, r). This suffices to show
the first inequality of (1), since for x ≤ r we have 1−r

1−x ≤ 1 and so the second term of D(r‖x) is
non-positive.

For the second inequality, we note that it is equivalent after manipulations to x ≥ rp1/r−1.
Plugging in x, and after more simple manipulations, that’s equivalent in the range to p1/r ≥ 1− 1−p

r ,
which is lemma 2.

This finishes the proof of lemma 3.

It’s somewhat surprising that the last argument in the proof of lemma 3 works, since if we had
plugged the lower bound from lemma 2 directly into the problem we would have had

r log r
x ≤ r log pr

p+r−1 ,

which is much weaker than what we prove, and not even defined for p+ r < 1.
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