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Abstract. Traditionally, GPUs only had programmer-managed caches.
The advent of hardware-managed caches accelerated the use of GPUs
for general-purpose computing. However, as GPU caches are shared by
thousands of threads, they are usually a victim of contention and can
suffer from thrashing and high miss rate, in particular, for memory-
divergent workloads. As data locality is crucial for performance, there
have been several efforts focusing on exploiting data locality in GPUs.
However, there is a lack of quantitative analysis of data locality and data
reuse in GPUs. In this paper, we quantitatively study the data locality
and its limits in GPUs. We observe that data locality is much higher
than exploited by current GPUs. We show that, on the one hand, the
low spatial utilization of cache lines justifies the use of demand-fetched
caches. On the other hand, the much higher actual spatial utilization of
cache lines shows the lost spatial locality and presents opportunities for
further optimizing the cache design.

Keywords: Data Locality · GPU Caches · Memory Divergence.

1 Introduction

GPUs have been very successful in accelerating general-purpose applications
from different domains. The advent of hardware-managed caches further accel-
erated the use of GPUs for general-purpose computing by exploiting temporal
and spatial locality. Caches reduce off-chip memory traffic and cut down pressure
on memory bandwidth, however, using caches efficiently is a difficult task be-
cause a GPU employs a large number of threads, and GPU caches are small that
lead to high contention and thrashing. In particular, there is a class of applica-
tions known as irregular applications that poorly utilize GPU caches. Irregular
applications have memory divergence and/or control divergence, and they span a
broad range of domains. GPUs issue concurrent memory accesses to consecutive
addresses by coalescing memory accesses of threads in a warp. However, it may
not always be possible to coalesce individual thread accesses due to scattered
memory accesses that lead to memory divergence.

Memory divergence is known to cause many problems, including data over-
fetch which can waste cache capacity, consume scarce resources such as MSHRs
and memory bandwidth, thus, further making it hard to utilize caches efficiently.
As exploiting data locality is important for performance, there have been sev-
eral studies to exploit the data locality in GPUs [15,7]. Moreover, the recent
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generations of GPUs have adapted the cache design to tackle issues such as data
over-fetch caused by memory divergence. For example, Maxwell, Pascal, and
Volta GPU architectures use sector caches to fetch only the sectors that are re-
quested instead of always fetching all sectors of a cache line. We show that there
is a higher locality in GPU caches than currently exploited by demand-fetched
caches, offering opportunities for further optimizing the cache design for higher
performance. Moreover, there is a lack of quantitative analysis of data locality
and data reuse in GPUs. Therefore, in this paper, we quantitatively study the
data locality and its limits in GPUs at different granularities. We observe that
data locality is much higher than currently exploited by GPUs.

In summary, we make the following main contributions:

– We present a comprehensive, quantitative and limit study of locality in GPU
data caches for memory-divergent workloads.

– We show that about 50% of cache capacity, and other scarce resources such
as NoC bandwidth, memory bandwidth are wasted due to data over-fetch.

– We show that memory-divergent workloads have much higher locality than
exploited by GPUs as locality gets destroyed due to cache thrashing.

– Our analysis shows that 57% of the cache lines are never re-referenced. How-
ever, the limit study shows that actually, only 30% of the cache lines are never
re-referenced and 27% are evicted before re-reference.

– We show that the low spatial utilization of cache lines justifies the design
decision to fetch sectors based on demand, however, the much higher actual
spatial utilization of cache lines shows the lost spatial locality and presents
opportunities for further optimizing cache designs.

The paper is organized as follows. In Section 2, we briefly discuss GPU data
caches and classify locality. In Section 3, we explain the experimental setup.
Section 4 presents the quantitative results. Section 5 describes related work.
Finally, we conclude in Section 6.

2 Background on GPU L1 and L2 Data Caches

Traditionally, GPUs only had programmer-managed caches, however, with the
advent of Fermi architecture, GPUs started using hardware-managed caches. In
fact, the hardware-managed caches have accelerated the use of GPUs for general-
purpose computing. There are several works which compared the performance of
Tesla and Fermi GPUs and reported that hardware-managed caches play an im-
portant role in the higher performance of Fermi GPUs over Tesla GPUs [18,6,3].
GPU caches face different design challenges than CPU caches due to their differ-
ent characteristics. For instance, write and allocation policies are quite different
from CPU caches. The L1 data cache is only write-back for local accesses and
write-evict for global accesses whereas in a CPU we either have write-back or
write-through caches. The allocation policy is usually no-write allocate for global
accesses and write-allocate for only local accesses. The deviation in write and
allocation policies is to cater to the different requirements of GPU workloads
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Table 1: Summary of locality classification.

Locality Category Description

Intra-warp Locality from threads of the same warp
Inter-warp Locality from different warps
Intra-CTA Locality from warps of the same CTA
Inter-CTA Locality from different CTAs

and smaller caches. GPU caches are shared by thousands of threads which make
them a scarce resource and a victim of a lot of contention. Furthermore, due to
the streaming nature of many GPU applications and smaller cache sizes, caches
can suffer from thrashing and high miss rate. Therefore, exploiting locality in
GPU caches is hard due to a large number of active threads and smaller caches.
In fact, some works reported negative performance results with caches [7,14].

Thread-blocks or co-operative thread arrays (CTA) in NVIDIA terminology
are independent units of scheduling on streaming multiprocessors (SMs) and
a thread-block can be scheduled on any SM. This feature allows transparent
scalability as simply more thread-blocks can be scheduled in parallel when more
SMs are available and vice-versa. As thread-blocks can be scheduled on any
SM, it is very hard to exploit inter-thread block locality at L1 caches because
the L1 cache is private to an SM. For example, when two thread-blocks have
inter-thread block locality but they are scheduled on different SMs, there is no
way to exploit inter-thread block locality at L1. L2 cache is useful for exploiting
inter-thread block locality in this case as L2 cache is shared among all SMs.
Therefore, we have a relatively large L2 cache, which helps to filter requests to
off-chip memory. L1 and L2 caches on GPUs are smaller than L1 and L2 caches
in CPUs, but they have high bandwidth.

A typical cache line size is 128B in GPUs. The loads and stores were normally
serviced at the granularity of a cache line until the Fermi architecture. However,
starting from the Kepler architecture and subsequently, in other architectures
such as Maxwell, Pascal, and Volta, the loads and stores can be serviced at 32B
granularity. The 32B granularity is known as a sector. These architectures still
have a data cache line size of 128B, but a cache line is divided into 4 sectors.
There are byte masks, and on a miss, a cache will only fetch the 32B sectors
that are requested. A full cache line is not automatically fetched, however, if all
four sectors are requested, it is also possible to fetch a full cache line.

2.1 Locality Classification

As a thread block (also known as CTA), and a warp are the scheduling units in
GPUs, we classify and study locality at thread block and warp level granulari-
ties. We classify the locality as intra-warp locality when a cache line is initially
referenced by a warp and then re-referenced by the same warp. When a cache
line is re-referenced by a different warp than the one initially requested the cache
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Table 2: Summary of simulator configuration.

Parameter Value Parameter Value

#SMs 16 Shared memory/SM 48KB
SM freq (MHz) 822 L1 $ size/SM 16KB
Max #Threads per SM 1536 L2 $ size 768KB
Max #CTA per SM 8 # Memory controllers 6
Max CTA size 512 Memory type GDDR5
#FUs per SM 32 Memory clock 2004 MHz
#Registers/SM 32K Memory bandwidth 192.4 GB/s

line, we classify such a locality as inter-warp locality. Similar to intra-warp and
inter-warp locality, we classify the locality as intra-CTA locality and inter-CTA
locality. Table 1 shows a summary of the locality classification.

3 Experimental Setup

In this section, we describe our experimental methodology.

3.1 Simulator

We use gpgpu-sim simulator for simulating different benchmarks [2]. We config-
ure the simulator to have two level data caches with a cache line size of 128B.
Table 2 summarizes the main configuration parameters of the simulator.

3.2 Benchmarks

Table 3 shows the benchmarks used for the experimental evaluation. We include
benchmarks from the popular Rodinia benchmark suite [4] and CUDA SDK [13]
that have memory divergence. From each benchmark, we select a single kernel
launch with the highest memory divergence, and when a benchmark has multiple
kernels, we only include kernels that have memory-divergence. A benchmark is
memory divergent if all intra-warp memory accesses of a load or a store instruc-
tion cannot be coalesced into one (two) memory transaction(s) depending upon
whether the coalescing is done at half (full) warp. We use coalescing efficiency
to note the degree of memory divergence for each benchmark. The lower the co-
alescing efficiency, the higher the degree of memory divergence. The coalescing
efficiency is given by the following equation:

CE =
∑

GMI/
∑

GMT

GMI is the total number of global memory instructions executed for a bench-
mark and GMT is the corresponding number of global memory transactions
issued. When global memory instructions are equal to the global memory trans-
actions, we have a case of perfect coalescing (100%), assuming 32-bit data is
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Table 3: Memory-divergent benchmarks used for the experimentation. A bench-
mark with different subscripts designates distinct kernels of the same benchmark.

Name Launch id CE (%) Description

histogram 36 3 Histograms for analysis [13]
kmeans1 1 6 k-means clustering [4]
scan1 11 5 Parallel prefix sum [13]
srad2 1 1 56 Speckle reducing anisotropic diffusion [4]
srad2 2 2 53 Speckle reducing anisotropic diffusion [4]
bfs 15 47 Breadth-first search [4]
ss1 9 11 Similarity score calculation [4]
b+tree1 1 75 Graph search [4]
b+tree2 2 75 Graph search [4]
srad1 1 5 70 Speckle reducing anisotropic diffusion [4]
srad1 2 11 79 Speckle reducing anisotropic diffusion [4]
mummergpu 1 7 Pairwise local sequence alignment [4]
storeGPU 1 41 Distributed storage systems [1]
mergesort1 2 5 Parallel merge-sort [13]
mergesort2 3 50 Parallel merge-sort [13]
mergesort3 41 67 Parallel merge-sort [13]
convSep1 1 50 Convolution [13]
convSep2 2 43 Convolution [13]
backprop1 2 64 Multi-layer perceptron training [4]
heartwall 2 54 Ultrasound image tracking [4]
hotspot 1 35 Processor temperature estimation [4]
leukocyte 3 51 Microscopy video tracking [4]

accessed by each thread. In the worst case, there can be one transaction issued
per thread of a warp that corresponds to a coalescing efficiency of about 3%
(1/32). Table 3 shows the coalescing efficiency of the benchmarks.

4 Results

In this section, we present the results of the quantitative study of L1 and L2
data caches. In Section 4.1, we present results for cache line reuse. Section 4.2
presents the analysis of the spatial utilization of cache lines. In Section 4.3 and
Section 4.4, we study locality at warp and CTA levels, respectively.

4.1 GPU Data Cache Lines Reuse Limit

Figure 1 shows the reuse of L1 data cache lines. Figure 1a shows the reuse of L1
data cache lines for 16KB size. The figure shows that for several kernels such as
histogram, kmeans1, scan1, the cache lines are evicted without any reuse. Only
a few kernels such as storeGPU, mergeSort2, and leukocyte have all of the cache
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(a) L1 data cache lines reuse with 16KB size.
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(b) Limit of L1 data cache lines reuse with with an infinite size.

Fig. 1: GPU L1 data cache lines reuse.

lines reused. The average cache line reuse is only 43%, which means that 57% of
the cache lines are never re-referenced or gets evicted before re-reference.

In order to study the lost opportunities to reuse cache lines due to limited
cache size, we also simulate a L1 data cache with infinite size. The infinite cache
size here implies that once a cache line is brought to the cache, it never gets
evicted. Figure 1b shows the L1 data cache lines reuse with an infinite size. The
average cache lines reuse for the infinite L1 data cache is 70%, which shows that
most of the kernels have high locality but current GPUs are unable to exploit
the locality due to limited cache size. However, even with the infinite cache size,
30% of the L1 data cache lines have no data reuse.

4.2 GPU Data Cache Lines Spatial Utilization Limit and Over-fetch

Figure 2 shows the spatial utilization of L1 data cache lines. Each kernel has
two bars. The first bar shows the average initial utilization of a cache line, i.e.,
when a cache line is initially fetched. The second bar shows the average final
utilization of a cache line, i.e., when a cache line is evicted. For calculating the
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(a) L1 data cache lines spatial utilization with 16KB size.
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(b) Limit of L1 data cache lines spatial utilization with an infinite size.

Fig. 2: GPU L1 data cache lines spatial utilization showing data over-fetch.

spatial utilization, we use a bit vector of length equal to a cache line size. The
bits corresponding to bytes that are requested at the time of fetching a cache
line are initially set and the bit vector is updated whenever a cache line is reused
until the cache line is finally evicted.

Figure 2a shows the spatial utilization of the L1 data cache lines for 16KB
cache size. The figure shows that for many kernels, the initial and the final uti-
lization of cache lines is almost the same, which means there is a very low spatial
utilization of L1 data cache lines. Only kernels such as b+tree1, b+tree2, srad1,
mergesort2, mergeSort3, convSep1, backprop1, and leukocyte have significantly
higher final utilization of cache lines. The average initial and final utilization of
cache lines is 46B and 65B for all kernels. This implies that about 50% of the
cache capacity, and other scarce resources such as network-on-chip bandwidth,
L2 data cache bandwidth, etc., are wasted due to the data over-fetch.

The low utilization of cache lines could also be due to the limited cache
capacity and high contention as a cache line may be evicted before it gets re-
referenced again. To study the upper limit of the spatial utilization of cache lines,
we simulate an infinite L1 data cache, which means a cache line once fetched to
the cache never gets evicted. Figure 2b shows the final utilization of cache lines
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(b) Limit of L2 data cache lines spatial utilization with an infinite size.

Fig. 3: GPU L2 data cache lines spatial utilization showing data over-fetch.

for an infinite L1 data cache. The figure shows that most of the kernels actually
have higher spatial locality than exploited by the default cache size, however,
GPUs are unable to exploit full spatial locality. The average final utilization
of cache lines for the infinite L1 data cache is 81B, which is 24% higher than
the default cache size. However, even with the infinite cache size, 36% of the
cache capacity is still wasted. This implies that there is a potential for further
improvements in the cache design.

There are two important conclusions that we can draw from the spatial uti-
lization of cache lines. First, on the one hand, the low initial spatial utilization
of cache lines justifies the sector cache design of Maxwell, Pascal, and Volta
architectures. On the other hand, the much higher final spatial utilization of
cache lines, as shown by our experiments, presents an opportunity for further
optimizing cache designs. For example, if we only fetch the sectors on demand
depending on the initial utilization of a cache line, we significantly lose the spa-
tial locality present in the kernels. The initial sectors that need to be fetched for
a memory load can be determined at the time of coalescing different memory
requests of threads of a warp. If we only fetch the sectors as determined during
coalescing, which is how it is done in recent GPUs, there will be significant lost
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(a) Intra- and inter-warp locality of L1 data cache with 16KB size.
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(b) Intra- and inter-warp locality of L1 data cache with an infinite size.

Fig. 4: Intra- and inter-warp locality of L1 data cache.

opportunities for exploiting locality as our analysis shows that the final utiliza-
tion of cache lines is much higher than the initial utilization of cache lines (see
Figure 2). One possible idea to exploit the lost locality is to investigate the use
of spatial locality predictor for GPUs and then depending upon the prediction,
fetch the predicted sectors.

We also did a similar kind of analysis for the L2 data cache. Figure 3 shows
the spatial utilization of L2 data cache lines for 128KB as well as infinite cache
sizes. Figure 3 shows that the L2 data cache has better spatial utilization of cache
lines compared to the L1 data cache. This is because the L2 data cache is shared
by multiple processors. The average initial and the final utilization of cache
lines is 54B and 85B, respectively. This means that 35% of the L2 data cache
capacity is wasted, which is lower than the L1 data cache but still significant
to look for further optimizations. The wastage of the L2 data cache is also a
measure of wasted off-chip memory bandwidth. The average final utilization of
cache lines is 95B for the infinite cache, which is almost 2.0× more compared
to the average initial utilization of cache lines. The big difference between the
initial and the final utilization of cache lines shows that pure demand-based
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(a) Intra- and inter-warp locality of L2 data cache with 128KB size.
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(b) Intra- and inter-warp locality of L2 data cache with an infinite size.

Fig. 5: Intra- and inter-warp locality of L2 data cache.

sector fetching, implemented in GPU caches, needs to be revisited to improve
their performance. The analysis also shows that we need more aggressive policies
to properly utilize the L1 data cache than the L2 data cache.

4.3 Intra- and Inter-Warp Locality

As cache hits and misses are important metrics to evaluate a cache design, we
also present hits and misses for both L1 and L2 data caches. We classify hits
into two categories, intra-warp and inter-warp hits. As a warp is an important
scheduling unit within an streaming multiprocessor, the hit ratio at a warp
granularity provides crucial information that could be used for both scheduling
warps and improving cache design.

Figure 4 shows the intra- and inter-warp hits of L1 data cache. Figure 4a
shows that the L1 data cache has 31% intra-warp and 43% inter-warp hits for
16KB cache size. The miss rate is 26% which is quite high. In contrast to GPUs,
CPUs have a hit rate typically between 95% to 97% for a L1 cache. As discussed
earlier, it is extremely difficult to exploit data locality in GPU caches due to
several factors such as small size, massive multithreading.
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(a) Intra- and inter-CTA locality of L1 data cache with 16KB size.
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(b) Intra- and inter-CTA locality of L1 data cache with an infinite size.

Fig. 6: Intra- and inter-CTA locality of L1 data cache.

Figure 4b shows the intra- and inter-warp hits for the L1 data cache with
the infinite size. The figure shows that the average hit rate is about 96%, which
is close to a typical hit rate for a CPU L1 cache. Concretely, on an average, we
have 50% intra-warp and 46% inter-warp hits. There are a couple of interesting
observations. First, kernels actually have a significantly higher locality but the
current GPUs are not able to fully exploit it. Second, in contrast to some existing
work [15], which shows much higher intra-warp locality than inter-warp locality,
we see that there is almost equal division between the intra-warp and inter-warp
localities. This is possible for memory-divergent workloads as they have scattered
memory accesses and threads from different warps (which contributes to inter-
warp hits) can access the data from the same cache line. This can happen more
frequently for memory-divergent workloads compared to regular workloads.

We also study the intra- and inter-warp locality for the L2 data cache. Fig-
ure 5 shows the intra- and inter-warp locality for the L2 data cache. The average
intra-warp and inter-warp hits are 30% and 15%, respectively, for the 128KB
size, while for the infinite size, the average intra-warp and inter-warp hits are
65% and 21%, respectively.
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(a) Intra- and inter-CTA locality of L2 data cache with 128KB size.
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(b) Intra- and inter-CTA locality of L2 data cache with an infinite size.

Fig. 7: Intra- and inter-CTA locality of L2 data cache.

An important point that is not evident after looking at the intra- and inter-
warp locality is whether the warps belong to the same CTA or different CTAs
(co-operative thread array aka thread block). This could also provide useful
insight as CTAs are units of work distribution across different streaming multi-
processors. Moreover, the quantitative numbers further provide information on
making scheduling decisions, for example, should we first schedule the warps
from the same CTA or different CTAs.

4.4 Intra- and Inter-CTA Locality

Figure 6 shows the intra- and inter-CTA locality of the L1 data cache for 16KB
and infinite sizes. Figure 6a shows that on an average, there are 68% intra-CTA
hits and 5% inter-CTA hits, which shows that a high percentage of inter-warp
hits shown in Figure 4 are basically from warps within the same CTA. This is
more evident when we look at the average numbers for the infinite L1 data cache.
On average, 91% hits are intra-CTA and only 5% are inter-CTA. Figure 7 shows
a similar analysis for the L2 data cache. For the infinite L2 data cache, inter-CTA
hits are 13%, which shows that there is a potential for better scheduling. For
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example, if we can schedule such CTAs on the same streaming multiprocessor,
there is a possibility to exploit more inter-CTA locality at the L1 data cache
that can lead to better performance.

5 Related Work

Related Work on Locality in GPU Caches: There are several works which re-
port that hardware-managed caches play an important role in the higher perfor-
mance of GPUs [18,6,3]. It is also well-known that exploiting locality is crucial
in GPUs, otherwise, hardware-managed caches can also cause negative perfor-
mance [7,14]. As sometimes, the use of caches can degrade performance, there
have been several studies, which show that bypassing caches could lead to higher
performance [9,5,19,11]. However, to the best of our knowledge, there is not much
work done to quantify the locality in GPU caches. Rogers et al. [15] propose a
cache aware warp scheduling mechanism, based on estimated intra-warp locality,
to capture locality that is lost by other schedulers due to excessive contention for
cache capacity. They reported that the majority of data reuse observed in highly
cache sensitive benchmarks comes from intra-warp locality and therefore, give
priority to intra-warp instructions to access L1 data cache. Li et al. [10] quantify
the percentage of the inter-CTA reuse, which is based on the data reuse of all the
memory requests generated from streaming multiprocessors before they enter L1
cache. In contrast, we present a comprehensive quantitative study of L1 and L2
data caches in GPUs, highlighting the gap between the locality exploited and
the maximum locality actually present in workloads.

Related Work on Memory Divergence: Meng et al. [12] introduce dynamic warp
subdivision (DWS), which allows a single warp to occupy more than one slot in
the scheduler. Independent scheduling entities allow divergent branch paths to
interleave their execution, and allow threads that hit to run ahead. The DWS
does not improve memory divergence, but results in improved latency hiding and
memory level parallelism. Tarjan et al. [17] propose adaptive slip, which allows
a subset of threads from SIMD warps to continue execution while other threads
in the same warp are waiting for memory. This provides benefits when runahead
threads prefetch cache lines for lagging threads.

Zhang et al. [20] propose a software solution called G-Streamline to improve
both irregular memory references and control flow. G-Streamline eliminates ir-
regularity by enhancing the thread-data mappings on the fly. Sartori and Ku-
mar [16] propose branch and data herding, which exploit error tolerance of ap-
plications to reduce memory divergence. Branch and data herding is based on
the observation that many GPU applications produce acceptable outputs even
if a small number of threads in a SIMD execution unit are forced to go down the
wrong control path or are forced to load from an incorrect address. Lal et al. [8]
investigate performance bottlenecks in GPUs and show that several workloads
have a high degree of memory divergence that can cause low performance.
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6 Conclusions

GPUs are high throughput devices and can deliver peak performance in TFLOPs.
However, due to several performance bottlenecks, the peak performance is of-
ten difficult to achieve. While caches play an important role in the higher per-
formance of GPUs, they can suffer from thrashing, leading to high miss rate,
in particular, caches can perform poorly for memory-divergent workloads. As
exploiting data locality is crucial for performance, we conduct a quantitative
study of data locality in GPU caches, showing the limits of locality for memory-
divergent workloads. Our analysis shows that memory-divergent workloads have
significantly higher locality, but the current GPUs are not able to fully exploit it.
We show that 57% of the cache lines are never re-referenced, however, the limit
study shows that only 30% of the cache lines are never re-referenced and 27% are
evicted before re-reference. We further find that about 50% of the L1 data cache
capacity is wasted due to data over-fetch. On the one hand, the low spatial uti-
lization of cache lines, as exploited by GPUs, justifies the cache design to fetch
sectors based on demand. On the other hand, the much higher actual spatial
utilization of cache lines shows the lost spatial locality and presents opportuni-
ties for further optimizing cache design. We also study the locality at intra- and
inter-warp levels and observe that, in contrast to previous studies, there is a sig-
nificantly higher inter-warp locality at the L1 data cache for memory-divergent
workloads, which can influence warp scheduling policies. Similarly, the locality
analysis at the CTA level shows 13% inter-CTA hits at the L2 data cache, which
shows the potential for better CTA scheduling across multiprocessors. In the
future, we plan to use some of the key insights to improve GPU performance.
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