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Abstract. With the Internet-of-things revolution, embedded devices are
in charge of an ever increasing number of tasks ranging from sensing, up
to Artificial Intelligence (AI) functions. In particular, AI is gaining im-
portance since it can dramatically improve the QoS perceived by the
final user and it allows to cope with problems whose algorithmic solu-
tion is hard to find. However, the associated computational requirements,
mostly made of floating-point processing, impose a careful design and
tuning of the computing platforms. In this scenario, there is a need for
a set of benchmarks representative of the emerging AI applications and
useful to compare the efficiency of different architectural solutions and
computing platforms. In this paper we present a suite of benchmarks en-
compassing Computer Graphics, Computer Vision and Machine Learning
applications, which are greatly used in many AI scenarios. Such bench-
marks, differently from other suites, are kernels tailored to be effectively
executed in bare-metal and specifically stress the floating-point support
offered by the computing platform.

Keywords: Benchmarks · Machine Learning · Artificial Intelligence ·
Floating-Point · FPU.

1 Introduction

In the Internet-of-Things era, the embedded computing platforms are in charge
of an ever increasing number of tasks. Novel and complex applications ranging
from the Artificial Intelligence (AI) to the computer graphics domain emerged,
and they are constantly evolving to improve the QoS perceived by the final
user. The computational power required by such tasks pushed to the limit the
efficiency requirement for the embedded platforms that are in charge of their ex-
ecution, since frequently such devices are battery-powered. In particular, most
of the AI applications are dominated by floating-point arithmetic computations,
which represent a major contribution to the energy consumption. Traditionally,
the benchmark suites are employed to deliver a set of representative applica-
tions to compare the efficiency of different computing platforms in a way that
is reproducible and consistent. Furthermore, they are the key factor enabling
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the design of energy saving methodologies for any class of computing devices,
single-core [33], multi-cores [32] and HPC [23] architectures, or specific arith-
metic accelerators [34].

The state-of-the-art reports different benchmark suites tailored to stress spe-
cific aspects of the computing platform. SPLASH-2 [29] and PARSEC [8] are em-
ployed to stress the multi-threading and multi-tasking capabilities of the comput-
ing platform, while SPEC applications [3] target single-threaded performance.
Moreover, AI [27] and machine learning [17] benchmark suites are available for
High-Performance Computing (HPC) platforms only. However, the critical draw-
back of any benchmark suite targeting AI applications is the abstraction layer,
since each application in the suite assumes the presence of an Operating System
as well as power-consuming resources, e.g., GPUs. The typical IoT scenario is
different, there are RISC CPUs where few hardware accelerators are employed
to offload the most intensive computational tasks from the main CPU. More-
over, the efficiency requirements impose to avoid the use of a fully-fledged OS,
which is frequently replaced by a run-time library and a set of low-level periph-
eral drivers [2, 4]. A valuable benchmark suite for this scenario, should provide
bare metal applications to stress the computing capabilities of the target em-
bedded systems, with specific emphasis on the floating-point support, given its
increasing relevance in nowadays AI applications.

Contributions - This paper illustrates a set of benchmarks targeting three
of the most critical application domains in the IoT era: machine learning, com-
puter graphics and computer vision. Instead of delivering complete applications
for each class, every benchmark in the proposed suite targets a different com-
putationally intensive brick of a possible bigger application that falls in one of
the three considered classes. In a nutshell, our benchmark suite is representative
of a wide set of popular application domains, can be employed on bare metal
without the impact and disturbance of an operating system and, finally, the fo-
cus on kernels (micro-benchmarks) allows to dramatically reduce the execution
time of the test, enabling the possibility of an effective design space exploration.
Such lightweight configuration is also suitable to analyze low-end computing ar-
chitectures, such those typically employed for IoT applications. The complete
benchsuite, together with a detailed description of each application is available
as open source at [1]. To show in practice the value of this benchmark suite,
results are collected on a RISC-V System-on-Chip platform meant for IoT. In
particular, we demonstrated the impact on the efficiency due to the amount of
floating-point resources available on the target device. The rest of the paper is
organized as follows. Section 2 examines the state-of-the-art benchmark suites
for image processing and machine learning applications. Section 3 presents the
proposed benchmark suite and describes the algorithms behind each application.
Section 4 is an example of usage of the benchmark suite which analyzes the error
rate of the application when varying the precision threshold and the number of
truncated bits in the mantissa of their floating-point representation. Section 5
drawn some concluding remarks.
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2 Related works

The state-of-the-art contains several benchmark suites targeting computing plat-
forms ranging from the embedded to the HPC domains. In particular, each
benchmark suite allows to assess different aspects of the target computing plat-
form.

Considering high-end embedded platforms and HPC systems, PARSEC [8]
and SPLASH-2 [29] applications are meant to stress the multi-threading and
multi-tasking capabilities of the computing platform. Differently, SPEC-CPU2006
benchmarks [3] are used to assess single-threaded performance. We note that ap-
plications in those benchmark suites spread over different domains, since they are
conceived for general-purpose computing platforms. However, their complexity
and the requirement of running on top of an Operating System (OS) make such
suites not viable for the assessment of both low-end embedded platforms and in-
development devices. The former, i.e., low-end embedded devices, in general do
not necessarily exploit an operating system while the latter, i.e., in-development
devices, are usually executed by RTL simulators or on prototype boards for
which the software ecosystem, e.g., OS and drivers, is not mature enough to
support OS-based applications.

To this extent, several general-purpose benchmark suites emerged to assess
different embedded system figures of merit. Such applications are usually writ-
ten in ANSI-C and are meant to to be executed in bare-metal. [14] proposes
the Worst-Case Execution Time (WCET) benchmark suite to assess the real-
time performance of the considered computing platform. [15] presents a set of
open source general-purpose applications, covering security, telecommunication,
consumer and networking domains, for which the required computational power
and the input size are optimized for the execution on embedded devices.

The AI momentum fueled the proposal of different benchmark suites and
frameworks specifically focused on the machine learning, computer graphics and
computer vision domains. CortexSuite [27] is a brain-inspired benchmark suite
containing a set of applications and algorithms pertaining machine learning, nat-
ural language processing and computer vision, also including real-world datasets.
The MLBench [17] benchmark suite specifically focuses on machine learning al-
gorithms, such as the Bayes classifiers. However, the applications in both Cor-
texSuite and MLBench are not suitable to be executed in bare-metal mode, thus
preventing their use during the microarchitectural design stage in the hardware
design flow.

To overcome such limitations, we present the VGM-Bench suite. It contains
12 kernel applications targeting three different application domains: computer
vision, computer graphics and machine learning. Each application is written in
ANSI-C and can be executed in bare-metal. Moreover, the default datasets are
sized according to the need of executing the applications where the computing
platform is either prototyped, i.e., FPGA-implemented, or still under design,
hence simulated using an RTL simulator.
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3 Benchmarks details

This section provides an overview of our bench-suite, organized according to
the realm of application: Computer Vision, Computer Graphics and Machine
Learning. We briefly describe the rationale behind each benchmark, its impact
on the state of the art systems and its implementation. Moreover, we discuss
whether a benchmark: (i) makes intensive use of floating-point computation
and, (ii) traces back to a classification procedure, meaning that we expect it to
be more resilient to floating-point errors. Apart from the description of its func-
tionality, each benchmark is described in terms of two properties: floating-point
intensiveness and type of application. The floating-point intensiveness measures
the percentage of FP-instructions in the benchmark, while the type labels each
benchmark as a classification application, or not. We note that the performance
of FP-intensive applications strongly depends on the floating-point support, ei-
ther hardware or software, offered by the computing platform. Moreover, clas-
sification applications are less sensitive to low-precision floating-point formats
than non-classification ones.

3.1 Computer Vision

Computer Vision addresses the problem of processing one or more images to
infer a wide variety of information from the captured scene. For this category,
we present four applications which are especially useful while recovering 3D
models from images, for instance for augmented reality, environment mapping
or camera localization.

Zero-means Normalized Cross Correlation (ZNCC) - It is a widely
adopted kernel to compute the correlation between the patches of two images
patches. Such kernel is employed in Stereo Matching [11] and 3D reconstruc-
tion [22]. The proposed benchmark compares two patches considering of the
fountain P-11 dataset [26] as default input set. Images are grayscale converted
and, then, encoded as a bi-dimensional integer array where each element cor-
responds to a pixel whose value is in the interval [0, 255]. The expected output
of ZNCC is a floating-point between -1 and +1. We note that the kernel proce-
dure performs several FP sums and multiplications, therefore it is floating-point
intensive.

Ray-Triangle Intersection - It is a fundamental kernel to estimate the
color of each pixel in rendering applications and 3D volumetric reconstruction
problems. Given a ray R originating from O and the triangle T , the idea is to
apply a transformation such that the transformed ray R′ is aligned with the x-
axis and the transformed triangle T ′ lays on the yz-plane. Then, the ray-triangle
intersection is simply given by the y z coordinates of the transformed point O′.
If its corresponding barycentric coordinates are inside T ′ then the intersection
test has success. The proposed benchmark considers 5 rays and 4 triangles and
tests the ray-triangle intersection for each pair, totaling 20 tests. Each test has
a binary output, thus making the kernel a classification application.
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Kalman Filtering - It is a widely used estimation tool that aims at pre-
dicting a series of the state of a process taking as input a series of noisy measure-
ments and the initial state. In Computer vision and Robotics, it plays an impor-
tant role, especially when dealing with Simultaneous Localization and Mapping
(SLAM) [12] and Parallel Tracking and Mapping (PTAM) [16] problems. To
this extent, the benchmark mimics the localization case of study in which the
state consists of the 3D position and the 3D velocity of a robot. We generated
the ground truth trajectory with a constant velocity model, where the velocities
are (10unit/s, 5unit/s, 2unit/s) and the measurements are derived from those
trajectory perturbed by a Gaussian noise ν ∼ N (0, 1). The kernel does not falls
into the category of classifier kernels. Moreover, the majority of the instructions
are due to matrix indexing operations, thus making the kernel an FP-mild one.

K Nearest Neighbor - Finding the K nearest neighbor of a query data
y ∈ Rn among a set of elements distributed in the Rn space is a key ingredient
of many Computer Vision algorithms, e.g., when computations involve 3D point
clouds. Given a set F of elements, i.e., features, f ∈ F ⊂ Rn, and a distance
function dist(·, ·), the k nearest neighbors of a query y ∈ Rn is the set of features
(F̂k = f1, ..., fk) ∈ F such that @f ∈ F \ F̂kandfk ∈ F̂k, dist(y, f) < dist(y, fk).
A simple and effective way to implement this algorithm is to store the features
in an array and order the array up to the k-th position as in the selection sort
method. The proposed kernel is fed with a set of 100 features and tests 20
query points. The output is a binary value for each query, i.e., found or not,
thus making the algorithm a classifier. We also note that the kernel involves a
balanced mix of floating point instructions together with indexing operations,
i.e., integer instructions.

3.2 Computer Graphics

Computer graphics is the branch of computer science that creates, manipulates
and stores geometric objects (modeling) and their images (Rendering). In the
proposed bench-suite, we identify four key procedures belonging to this category.

Laplacian Smoothing - It is adopted as a fairing step of many computer
graphics algorithm, extended by several methods and applied in variational mesh
refinement algorithms to implement a smoothing energy term [22]. The proposed
benchmark is fed with a deformed sphere made up of 77 vertices and 150 faces.
The output is a set of new vertex positions obtained by the smooting process.
In addition to this, even if the core of the application is essentially an average
of float vertices positions, the application highly rely on indexing operations to
retrieve the coordinates of the vertices to be processed at each step.

Facet Normals - Given a 3D mesh, its facets normals are exactly the nor-
mal vectors of the plane where each facet lays. They can be computed through
the cross product applied for each facet of a mesh. This computation is con-
ceptually easy however, normals constitute a fundamental building block of the
computation of lighting in computer graphics rendering pipelines, [9]; they can
also be the basis for vertex normal computation [18] which is, in turn, a rele-
vant issue for many rendering operations. Moreover facets normals computation
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is fundamental during the mesh refinement operation proposed in most of of
the works cited in the previous section This benchmark uses as input a sphere
with 77 vertices and 150 faces. The expected output is an array of 3D vectors
(no classification), 150 in our case, each vector is the normal of the facet with
the corresponding index. Even in this case the number of indexing operation to
access to vertices positions is significant compared to the floating point ones.

Facet Subdivision - Facet subdivision aims at refining the resolution of the
mesh. Given a triangular mesh several approaches have been adopted to improve
the resolution of the mesh while smoothing its shape [25]. However, in some
situations, there is a need for disentangled resolution increase and smoothing.
In such cases, a very common approach turns the facets of the mesh in a 1-to-4
pattern [28]; in this benchmark, we implemented the 1-to-4 pattern as follows.
First, we copy the input vertices into the output vector of vertices Vout. For each
vertex, we store a vector which is populated whenever a new vertex is added
to split one of the adjacent facets. For each facet, and each of its three edges,
we check from the vector associated to the ending vertex vmin whose index is
smaller if the mid-point exists; otherwise, we create it and we add it to the last
empty element of the vector associated with vmin. The four new triangles are
then created by adding the indices of the original and the new vertices to Iout
coherently, where Iout is the array of indices building up the facets of the output
mesh.

The input of this benchmark is a portion of a sphere with 39 vertices and 58
facets, and the expect output a mesh with 135 vertices and 232 facets, therefore a
mix of index (integer output) and vertices positions (float output). Facet subdi-
vision involves many indexing operation both to access to vertices positions and
to define the new vertices and their connectivity inside the new mesh; floating
point operations is limited to the vertex averaging.

Self Intersections - Mesh self-intersections are those facets belonging to
the same mesh and intersecting with each other. So, given mesh Γ containing a
set of facets F , we define two facets f1, f2 ∈ F as self-intersecting if they intersect
each other; the set mesh self-intersections F̂ contains all facets fi such that ∃fj 6=
fi ∈ F̂ with which it has an intersection. Self-intersections are usually considered
an issue especially since they are an unrealistic representation of a real-world
surface. For this reason, several Computer Graphics algorithms, especially those
modifying the mesh shape, requires the detection of self-intersection to get rid of
them or preemptively avoid a certain mesh deformation that would produce them
[30]. Similarly in Zaharescu et al.,[31] evolves a mesh to refine its appearance,
and at the same time checks which are the self-intersections and they fix them.
To implement self-intersection detection we check if, each facet intersects one of
the others using the triangle-triangle intersection algorithm proposed by Möller
[19]. The benchmark takes as input a mesh made up of 47 vertices and 72 facets.
The mesh has been intentionally designed with 16 self-intersecting facets.

Therefore, the procedure performs binary classification for each facet. How-
ever the number of floating-point operation is significant, due to the triangle-
triangle intersection test
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3.3 Machine Learning

Machine learning is an application of artificial intelligence (AI) that provides
systems the ability to automatically learn and improve from experience without
being explicitly programmed. Machine learning focuses on the development of
computer programs that can access data and use it to learn for themselves.
VGM-Bench suite proposes four benchmarks to address this field.

Linear Regression - It is one of the most basic and relevant Machine
Learning tools whose aim is to fit a linear model into a set of labeled data.
Given a set x of input data and the corresponding y labels, the goal is to find
a linear model y = θ1x + θ2 that is the better represents the input-label rela-
tionship, i.e., it minimizes the mean-squared error. Linear regression is one of
the simplest machine learning methods which is the basis of some more complex
approaches[20]. The benchmark is made up of 67 sets of 100 points where a lin-
ear 2D model has to be fit. The output of linear regression, as suggested by the
name is float (no classification) and is composed by a good balance of indexing
and floating points operations.

k-Means - It is a classical clustering algorithm widely adopted for data
analysis or compression. Given a number K of clusters, and a set of input data x,
K-means aims at finding the position of the centroids of the clusters and to which
each input data has to be associated. In the following, we describe the algorithm
considering the input data as points in the space. the same procedure can be
applied to whatever input data belonging to Rn. K-means is an Expectation-
Maximization method that minimizes the function:

J =

m∑
i=1

K∑
k=1

wik

∥∥xi − µk

∥∥2 (1)

where wik = 1 if point i is associated to cluster k, otherwise wik = 0, xi the i-th
input point and µk the k-th the cluster centroid. Therefore it alternates between
an Expectation and a Maximization step. After initializing the position of each
centroid µk, usually spread uniformly in the domain of the input data, in the
Expectation step it minimizes J w.r.t. wik keeping µk fixed. In the maximization
step, K-means minimizes J w.r.t. µk keeping wik fixed, i.e., In other words,
it recomputes the centroids according to the new assignments in wik. In the
benchmark, two clustering problems are reported with 5 centroids and 9 input
points. Since the aim is to choose which point belongs to which centroid, k-
means traces back to classification. Even in this case the procedure is made up
of a balanced mix of floating point and indexing operations.

Q-learning - Q-Learning is one of the most popular algorithms of Reinforce-
ment learning, i.e., the branch of Machine learning in which an agent interacts
with the environment and it has to learn how to reach a specific goal, knowing
that a reward is associated with certain actions. A reinforcement learning prob-
lem is often described as a Markov Decision Process. We define a set of states
(S) a set of actions (A) that the agent can take, a transition probability P (s, s′)
of going from s to s′ and a reward function Ra(s′, s) of going from s′ to s with an
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action a. Q-learning is a reinforcement learning algorithm that seeks to find the
best action to take given a state; more in general, Q-learning looks for the policy
π(a, s), i.e., the probability that an action a has to be applied given a state s. To
do so, a table state-action, named q-table, is kept updated as the agent explores
the environment. In general, giving an agent starting in a state s1, it takes an
action a1 and receives a reward r1 and ends in a state s2. To choose a1 either the
agent chooses randomly, or it considers the action that according to the q-table
will give the highest expected reward. The choice between these two alternatives
is the well-known trade-off between exploration and exploitation. This process
is usually iterated multiple times for all the states until convergence. Let notice
that the random number adopted to choose the random action, have been ex-
tracted in advanced and saved in an array, to obtain deterministic results. In
the proposed benchmark we consider a Markov decision Process with 6 states,
where the sixth is the goal. The input is just the Markov Decision Process (MDP)
description and the expected output is the updated q-table. The computation
involves many matrix multiplication therefore a significant amount of indexing
operations, i.e., integer instructions, compared to the FP ones.

Long-Short Term Memory - Long-Short Term Memory (LSTM) Neural
Network is a special kind of Recurrent Neural Networks (RNN) that in addition
to the short term dependencies learned by RNN, it also aims at learning long-
term ones [13]. Such networks usually process input sequences as strings of text,
and output some kind of prediction, depending on the task and depending on
the training data. The idea in LSTM is to have the so-called cell, where each
element of the input is processed; then, it uses input, output and forget gates to
learn dependencies among data. At the end of this process, to map the hidden
state of dimension h×1 to the desired dimension do, e.g. a single predicted value,
a linear layer is added after the output of the hidden layer. In the benchmark we
implemented all matrix and vector operations, the sigmoid, the tanh and so the
exponential function. In the proposed application we can find a neural network
aimed for time-series predictions, where the input is a series of 20 × 1 vector
(d = 20) elements, and we use a single hidden layer of dimension h = 32. To
generate the data we followed the procedure described in [5] and we trained our
model with PyTorch [21].

The output of LSTM is a prediction of the temporal series (no classification).
LSTM involves numerous floating point operations but also significant amount
of indexing operations, especially due to array and matrix multiplications.

4 Experimental Evaluation

As already mentioned, most of the nowadays IoT devices are battery-powered
and cost-sensitive. Thus, during the design of the computing platforms, it is im-
portant to consider both the size and the computing power of all the components
of the system.

In particular, one of the most critical components of the CPU is the FPU
(Floating Point Unit). Especially in small embedded processors, its power con-
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Fig. 1: Floating point instructions mix for the proposed benchmarks. Results are
collected from a RISC-V compliant platform employing a custom CPU embed-
ding the hardware FPU from the ORPSoC-v3 project.

sumption can represent up to 40% of the overall count. As a consequence, it is
crucial the sizing of the FPU operands, to prevent the cost of a full-size FPU
implementation. To this purpose, we will show the benefit of using our suite to
tackle this type of problem, by considering a representative use case. The analy-
sis is split over two sections. The experimental setup is described in Section 4.1,
while the experimental results are discussed in Section 4.2.

4.1 Experimental setup

We employed the System-on-Chip (SoC) presented in [24] as our reference com-
puting platform. The SoC embeds a fully-compliant RISC-V CPU that features
a single-issue, in-order, 5-stage pipeline, and implements the Integer (I), Integer
Multiplication and Division (M) and Single-Precision Floating-Point (F) RISC-
V 32-bit ISA extensions. The floating-point unit adopted in this processor has
been taken from the ORPSoC-v3 project and has been adapted to comply with
the RISC-V extension specification. The applications have been simulated on the
considered processor using the xsim RTL simulator, within the Xilinx Vivado
2018.2 design suite, and by setting a 50MHz clock frequency. The floating-point
instruction mix has been extracted through continuous monitoring of the perfor-
mance counters implemented in the processor (more details can be found in [1])
.
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(a) Threshold = 10−3
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(b) Threshold = 10−4
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(c) Threshold = 10−6
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(d) Threshold = 10−7

Fig. 2: Error rate of the benchmark applications when varying the precision
threshold and the number of truncated bits in the mantissa of their floating-
point representation.

4.2 Experimental results

Figure 1 shows the floating-point instruction mix for the bench-suite: for each
application on the X axis, we plot the stacked percentages of the different types of
floating-point instructions on the Y axis. Figure 2, instead, reports the number of
errors generated by the applications when truncating the mantissa of the floating-
point operands. This truncation is mimicking a possible reduction of the operand
size to investigate if a smaller FPU can be adopted to reduce the size and power
consumption of the device. Given a certain accuracy threshold varying from
10−3 to 10−7 ((a), (b), (c), (d)), each plot displays the normalized percentage of
results not satisfy the desired accuracy. We consider 5 cases, truncating from 4
to 20 bits of the 23-bit mantissa.

From these two figures, we can notice that there is no correlation between
the percentage of floating-point instructions in the application with the number
of errors generated. For example, ZNCC has 11.8% of floating-point instruction
against the 0.8% of Laplacian Subdivision, but the number of error generated
is around 100% when truncating more than 8 bits of mantissa. The number of
errors depends more on the application algorithm rather than on the number of
truncated bits. For example let us consider a classifier, this applications returns a
boolean or an integer (number of the class) value, e.g., in the case of Ray Triangle



VGM-Bench 11

Intersection, it returns true if the ray intersects the triangle, false otherwise. It
doesn’t consider the position of the intersection or the incidence angle, so even
if there are errors due to the truncations, the final result, in most cases, can
be correct anyway. This consideration becomes fundamental when there is a
need to use an FPU dedicated for a specific type of algorithm: in this case the
number of bits for the mantissa can be tailored to meet its specific requirements.
Lets considering again, as an example, Facet Subdivision, Self Intersection, Ray
Triangle Intersection, Nearest Neighbour and K-Means. We can notice that the
number of errors does not increase significantly when decreasing the required
precision. In fact, the average error percentage for these applications goes from
close to 18% up to around 22%. The other applications, since their final outputs
are floating-point values, are more sensitive to the reduction of the number of
bits used to represent the mantissa of the operands, pulling the number of errors
rapidly up to the maximum value. Thanks to the use of our benchmark suite
exploiting selected micro-kernels, this design space exploration has been carried
out in less than two hours on a Xeon E5-2650 V3 running @2.3GHz.

5 Conclusions

In this paper we propose VGM-bench, a benchmark suite containing bare-metal
applications coming from computer vision, computer graphics and machine learn-
ing areas. These applications aim to stress the whole hardware architecture of
the target computing platform, with a special focus on the floating point unit,
and can be particularly useful during the prototyping phases of a design. To
show the effectiveness of VGM-bench, the full suite has been simulated on a 32-
bit RISC-V CPU [24] leveraging Xilinx Vivado 2018.2 design suite, to perform
an extensive design space exploration. In addition to the analysis of the mix of
floating-point instructions generated by the proposed benchmarks, we explored
the impact of different mantissa truncations on the results accuracy, since this
aspect is related to the cost and power consumption of embedded processors.
Such design optimization has taken less than 2 hours of simulation on a mid-
range desktop, thus making such optimization step fully affordable. The source
code of the bench-suite is available for free download at [1], together with a
complete description of each application.
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