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Abstract. The design constraints of Implantable Medical Devices
(IMD), such as the low energy consumption, impose significant chal-
lenges to application developers. Software tools that improve the quality
of the source code by means of technical debt management and provide
energy consumption estimations are useful to IMD application devel-
opers for addressing such challenges. In this work, we demonstrate the
effectiveness of tools that manage the technical debt and provide energy
consumption estimations applied to an IMD application for seizure detec-
tion.
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1 Introduction

The Implantable Medical Devices (IMDs) are objects surgically inserted into the
human body for medical purposes [7]. They are used to treat conditions such
as cardiac disorder, epilepsy, numerous autoimmune diseases and psychological
disorders (among others), thus contributing to the normal quality of patient’s
lives. Nowadays, IMDs are a common part of modern medical care, support
physicians to diagnose and treat diseases and enable the quality of life of patients.

The design requirements of IMDs include the small volume in terms of size
and weight, long lifespan, low energy consumption, high biocompatibility and
reliability [8]. As the clinical demand for IMDs increases, addressing design and
efficiency challenges is even more urgent. From application development per-
spective, increasing the quality of source code (improving maintainability and
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reusability) and evaluating the energy efficiency contribute to meeting the afore-
mentioned challenges.

The SDK4ED platform integrates a number of toolboxes for application
developers of embedded systems that enable the optimization of various source
code qualities, such as the source code maintainability (e.g. the management of
technical debt), the security and the energy consumption optimization®. Addi-
tionally, it identifies trade-offs between the optimization of the maintainability,
security and energy qualities at application source code-level and enables deci-
sion support. More specifically, the toolboxes are the following: i) Technical Debt
Management ii) Security iii) Energy consumption iv) Forecasting and v) Deci-
sion support. The toolboxes recommend source-to-source optimizations, while
the decision support toolbox provides guidance to developers about the opti-
mizations that should be applied based on user-selected priorities.

In this paper, we leverage specific tools from the SDK4ED platform to effi-
ciently manage the technical debt of a seizure detection IMD application and
estimate the energy consumption. Therefore, this work contributes to the eval-
uation of the SDK4ED tools on a real-word use case from the IMD domain and
we reach interesting conclusions.

The rest of the paper is organized as follows: Sect. 2 provides more details
about the SDK4ED tools used in the present work, as well as related work
about the technical debt management and energy consumption approaches in
the IMD domain. Section 3 describes the implementation of the tools in the
IMD application and in Sect.4 we draw conclusions.

2 Related Work

Technical debt (TD) in software engineering refers to the additional maintenance
costs caused by quality compromises which are often taken for short-term bene-
fits during the software development process. The TD metaphor which was first
coined in 1992 by Ward Cunningham [6] has proved highly effective as a means of
conveying to nontechnical product stakeholders the need for what we call “refac-
toring” [9]. The concept of Technical Debt Management (MTD) encompasses all
processes that should be undertaken by software development teams to identify,
measure, prioritize and repay TD.

Embedded systems form a software-intensive domain where platform-specific
run-time constraints such as performance, energy consumption and memory
usage, have to be strictly satisfied. However, embedded systems exhibit long
lifetime expectancy, often beyond a decade, resulting in intense maintenance
activities. To limit the effort spent on maintenance, companies could invest in
boosting design-time quality through the management of TD. A case study
involving seven embedded software industries revealed that quality attributes
such as functionality, reliability, and performance are indeed given higher prior-
ity compared to managing TD [3]. However, developers of embedded software

! The SDK4ED platform: https://sdkded.eu/.
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clearly acknowledge the need for low TD on components that are expected to
have a longer lifetime [3].

Energy efficiency challenge for IMDs is usually addressed through approaches
such as energy harvesting [10] and the design of ultra-low power hardware
devices [1]. For instance, the integration of dedicated hardware blocks that per-
form the computational expensive operations, as well as frequency and voltage
scaling are typical techniques applied at OS/hardware-level to improve energy
efficiency [7]. However, source-to-source energy optimization techniques, such as
cache utilization improvement, which are widely applicable in embedded sys-
tems are also applicable in the IMD domain. The tools used in the context of
this work enable such optimizations by providing relevant information about
the energy efficiency of the application. More specifically, the SDK4ED tools
for energy consumption optimization extend advanced machine-learning tech-
niques described in the literature for estimating energy consumption [5,11] and
identifying acceleration opportunities [2].

3 Technical Debt and Energy Consumption Evaluation

3.1 Overview of the Application and Source Code

The use-case application targets modern Implantable Medical Devices (IMDs),
which are battery-powered embedded devices with high safety and reliability
standards. These devices are designed to operate for long time (up to 10 years)
implanted in the human body. To support the treatment capabilities of these
devices, they are equipped with wireless transceivers, able to communicate with
external reader/programmer or a base station for local and /or remote monitoring
of patient health, performing a device test, reading sensors, updating device
settings.

The application provides primary implant functionality, e.g. Neuro-
stimulation, seizure detection, cardiac pacing etc. More specifically, the applica-
tion performs the following tasks:

— The sensor (ECoG/EEG) values are received via ADC periodically (using
interrupts)

— An FIR filter operation is performed on the input samples. This filter accu-
rately approximates a continuous complex Morlet wavelet

— Based on the filter output a decision whether the seizure is detected or not is
made

— Optogenetic or electrical stimulus are applied via GPIO in order to suppress
the seizure.

3.2 Technical Debt Management

Methodology. In this subsection we present the methodology that has been
followed to measure the levels of Technical Debt for the software that belongs
to the Implantable Medical Devices application domain.
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Fig. 1. Tool flow for technical debt management

In the context of the SDK4ED platform, Technical Debt management con-
sists of monitoring all key aspects of TD, namely Principal, Interest and Inter-
est Probability. Figure 1 graphically depicts the tool flow of TD management
(TDM). TDM toolkit relies on three tools: 1) SonarQube ii) Metrics Calculator
and iii) Breaking point tool.

SonarQube is considered by many the world’s leading software quality dash-
board. It is based on the SQUALE method and: (a) contrasts the source code of
an application with a set of predefined rules, so as to identify violations called
code smells, and (b) for each identified violation it calculates a remediation time
that is required to resolve it. The sum of the remediation time for all identi-
fied violations is recorded as the SQUALE index, representing TD principal.
In addition, SonarQube calculates the number of bugs, vulnerabilities and the
percentage of duplicated code.

The Metrics Calculator has been developed in the context of SDK4ED with
the purpose of calculating maintainability metrics for object oriented and non-
object oriented software. For non-object oriented languages (like C) it calculates
coupling (Fan out) and cohesion (Lack of cohesion between Lines) per file. Fan
out refers to the number of modules called from a file and Lack of cohesion
between Lines represents the coherence between all possible pairs of lines of
code of a method (aggregated at file level as an average). For object oriented
languages (like Java) it calculates 10 metrics: Message-passing couple (MPC),
Depth of inheritance tree (DIT), Number of children (NOCC), Response for
class (RFC), Lack of cohesion in methods (LCOM), Weighted methods per class
(WMPC), Data abstraction coupling (DAC), Number of methods (NOM), Lines
of Code (LOC), Number of Properties (NOP).

The results of SonarQube and Metrics Calculator are being used as input to
the Breaking Point tool to calculate TD Interest and the time point at which
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the accumulated interest will exceed TD principal (breaking point) and Inter-
est Probability. TD Interest is calculated based on the FITTED Framework [4].
The FITTED framework has been introduced to measure software sustainabil-
ity, which is the ability of a system to meet “the needs of the present without
compromising the ability of future generations to meet their oun needs”. FIT-
TED measures this as the period in which the cumulative interest is lower than
the saved principal. When cumulative interest is equal to the saved principal the
system is on its breaking point which means that any savings resulting from the
decision to not repay TD will vanish due to increased maintenance effort during
evolution. To calculate TD Interest, FITTED suggests the following steps:

1. identify the five artifacts that are most structurally similar to the artifact
under consideration

2. based on the values of the selected object-oriented metrics for all structurally
similar artifacts, compile an artificial optimal one

3. calculate the average distance of the artifact under analysis from the artificial
optimal one-this distance is referred as the ratio of additional maintenance
effort

4. calculate the average maintenance product (i.e., lines of code maintained) in

each version

multiply the ratio of additional maintenance effort with the average mainte-

nance product (extract from past changes on the artifact under analysis)

6. divide the previous outcome with the average lines of code maintained in one
hour, so as to retrieve the interest in minutes; and

7. calculate interest in currency using the same hourly rate as in principal cal-
culation.

_CTI

Finally, Interest probability is a measure of how frequently a file changes in the
sense that a file that changes frequently adds more debt (interest).

Results. In this subsection we present the results on TD quantification, focusing
on TD Principal, TD Interest and Interest Probability for the target system. The
results are summarized in Table 1.

The TD Principal varies across system files; in relative terms on can identify
file ‘reader.cpp’ as the one holding the largest principal. This particular file
requires 302$ to fix the 29 identified code smells. Even more important is the
fact that it also exhibits the highest interest (9.68%) and a very high interest
probability (0.8). In other words, this file violates several of the rules checked by
SonarQube, its metrics indicates that the maintainability is quite low and has
a high probability of being changed in the subsequent version. All these signals
provide an imminent risk which should be mitigated by the development team.
Similar observations can be made for file ‘cisc.cpp’.

In terms of the particular code smells that appear in the code, SonarQube
indicates for example that more unit tests should be added so as to increase cov-
erage. For file ‘reader.cpp’ one of the most demanding issues reads ‘92 more lines
of code need to be covered by tests to reach the minimum threshold of 65.0% lines
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Table 1. Technical Debt Management output

Source file D T'D interest | Interest Code LOC Complexity
principal probability | smells
api.cpp 92 0 0 7 93 |15
api.h 50 0 0 [ 15 [ 11 [ 0
body.cpp 14 0 0 |4 11 | 2
body.h 10 0 0 ‘ 1 ‘ 1 ‘ ]
resources/imdcode_v1.3/imdcode.c | 191 0 0 [ 17 | 111 | 26
resources/imdcode.c 183 0 0 18 111 26
main.cpp 53 0 0 7 53 6
mistyl.c 148 0 0 7 145 |15
mistyl.h 65 0 0 16 58 0
reader.cpp 302 9.68 0.8 29 206 |25
reader.h 9 0 0 3 1 0
sec_primitives.cpp 23 2.8 0.25 3 24 4
sec_primitives.h 19 0.7 0.25 5 3 0
sims.cpp 14 0 0 | 4 | 11 | 2
sims.h 10 0 0 ‘ 4 ‘ 1 [ 0
sisc.cpp 280 30 0.87 [ 26 | 199 | 24
sisc.h 9 0 0 3 1 0

coverage’. Such an issue requires substantial effort to be resolved (estimated by
SonarQube to 3h 4min). Another striking issue, which also contributes heavily
to the total principal, is code duplication. For file ‘reader.cpp’ 2 duplicated blocks
of code must be removed requiring an estimated time of 30 min.

On the other hand, one can observe files with relative high TD Principal (such
as imdcode.c) but without any TD Interest or Interest Probability. This is due
to the fact that this file has been introduced in the last version and thus it has
never been the subject of change. Thus, to be certain whether the development
team will face maintainability issues, one should probably wait for data from
further revisions. However, we need to note that files with high Principal, but
low Interest (that have been maintained for some versions) are usually assigned
a low priority for TD management.

These findings imply that a software development team wishing to manage
TD in its products, shouldn’t focus only on selected figures, but seek a combined
interpretation of the findings. In other words, maintenance problems are probable
for files with a high TD principal, substantial interest and non-negligible interest
probability.

It is well known that all contemporary software systems evolve frequently
over time. Thus, beyond the analysis of the current snapshot of each system,
it makes sense to observe the evolutionary trends of TD-related concepts. In
Figs. 2a and 2b we plot the evolution of Principal/Interest and Breaking Point
across system versions, respectively.

From Fig. 2b, we can observe that the system is slightly deteriorating over
time, in terms of TD principal, presenting some high spikes (introduction of
considerable TD principal at once) in version 4 and 8. Its interest remains rela-
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Fig. 2. Evolution of TD aspects and evolution of TD breaking point

tively stable; nevertheless, the cumulative interest is naturally increasing almost
linearly, as the interest of each version is added to the already existing interest.

However, the evolution of the Breaking Point in Fig.2b reveals a rather
healthy project status: The Breaking Point, i.e. the time at which the accu-
mulated interest will exceed the TD Principal lies for most of the versions 20
versions ahead. The Breaking Point is doubled in the final version. This is pri-
marily due to the addition of new code in the last version, which increases
Principal - see Fig. 2a (resulting in additional rule violations being detected by
SonarQube). However, it seems that the new code has not introduced additional
interest, which possibly implies that it is well designed in terms of coupling
and cohesion. Considering the rather short history of the project (9 versions), a
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Breaking Point of 40 version indicates that the development team is not expected
to face significant additional maintenance costs in the near future.
3.3 Energy Consumption Evaluation

Figure 3 shows the tool flow of for energy consumption estimation and opti-
mization. It consists of three tools: 1) Hotspots identification i) Acceleration
opportunities identification and iii) Energy consumption estimation.

: Hotspot : Source code

1 identification tool ! Hotspots

H . RE |
Application 1 | Static analysis | 1
source code 1| and dynamic |

i | instrumentation | | Hotspot 1

Acceleration opportunities identification tool :: Energy copsumptlon
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Fig. 3. Tool flow for energy consumption estimation and optimization.

The hotspot identification tool parses the application source code and uses
dynamic instrumentation to identify the parts of the application that are com-
putationally expensive in terms of CPU cycles. The main purpose of the tool
is to provide the parts of the application source code in which optimizations
are expected to have major impact in energy and /or performance. From techni-
cal perspective, the hotspot identification tool is based on CLANG and on the
Cachegrind tool from the Valgrind benchmark suite. CLANG is used to iden-
tify loops and functions through source code static analysis. Valgrind performs
dynamic instrumentation and estimates the number of CPU cycles across the
application in line-by-line granularity. By combining the outputs of the static
analysis and Cachegrind the CPU cycles spent in each loop and function are
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estimated. The most computationally expensive loops and functions of the appli-
cation source code are the “hotspots”.

Table 2. Hotspot identification output

HotspotlLinc sta.rt’Linc cnd‘CPU cycles‘Cachc miss | Function name Source file

Function-level granularity

1 218 705 5% 116 % main imdcode.c
2 106 153 1% 0% mistyl_encrypt_block | mistyl.c
3 32 44 3% 9% fi mistyl.c
1 191 211 3% 0% \cmac imdcode.c
5 a7 62 1% 0% fo mistyl.c
Loop-level granularity

1 202 206 3% 0% - limdcode.c

The results of the IMD application analysis are shown in Table 2. 5 compu-
tationally expensive functions are identified and one critical loop. The starting
and ending line of each hotspot is reported, as well as the percentage of CPU
cycles spent in each one. Based on Cachegrind analysis, the cache miss ratio is
also reported for each hotspot. Thus, developers may consider applying opti-
mizations that improve cache utilization (e.g. cache blocking) in hotspots with
high cache miss ratio.

The hotspots are further analyzed by the acceleration opportunities iden-
tification tool. This tool is based on dynamic instrumentation techniques. It
extracts information from each hotspot, such as ILP level and memory access
pattern. This information feeds a machine learning model, which provides an
estimation of the energy gains of offloading the specific hotspot on a GPU accel-
erator. For the specific application no acceleration opportunities were identified.
In other words, none of the hotsposts is estimated to provide energy gains by
being executed on a GPU.

The energy consumption estimation tool, processes the hotspots through
source code static analysis and extracts information from the assembly instruc-
tions, such as the type of instructions and their sequence. This information is
the input of a machine learning model that estimates the execution time and the
energy consumption. The tool can provide estimations for any embedded plat-
form provided that the dataset will be prepared and the model will be trained
for each one.

Table 3 shows the energy consumption and execution time estimation for
a number of ARM-based embedded platforms. Energy consumption model was
trained for A-57 and M0+ only. However, the execution time model was trained
for all embedded platforms of Table 3. The selected CPUs belong to the Cor-
tex A family (A-57 and A-72) and to the Cortex M family, which mainly targets
microcontrollers. Developers may exploit these results by selecting the most suit-
able platform, based on the design constraints. For example, by deploying the
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Table 3. Time and Energy estimation of various platforms integrating different ARM
CPU architectures

Platform (CPU) Time (us) Energy consumption (mJ)
Nvidia Tegra TX1 (ARM Cortex A-57) 16 0.09

Raspberry Pi4 (ARM Cortex A-72) 17.5 -

Arduino Nano 33 10T (ARM Cortex M0+) | 1400 |0.0008

IMD application on Arduino Nano, execution time is traded for very low energy
consumption.

4 Conclusions

Both TD analysis and energy consumption tools aim at assisting application
developers in the process of maintaining and optimizing the application source
code. More specifically, the analysis of TD does not aim at characterizing a
software system as well- or poor-performing. Rather, it can serve the purpose of
raising warnings about repeating code or design inefficiencies, such as lack of unit
tests or duplicate chunks of code. The development team, considering also the
change frequency of the affected files, can value the merit of such warnings, and
proceed to code quality improvements. The application of the SDK4ED platform
on the IMD application revealed that a unified view of TD principal, interest
and interest probability can help to quickly identify and prioritize code quality
improvements on selected artifacts so as to increase their maintainability.

The energy consumption analysis set of tools identify critical parts of the
application and provide energy consumption and execution time estimations
for various embedded platforms. Thus, developers may obtain estimations in
a fast and convenient way and identify performance vs. energy trade-offs by
application deployment in various architectures. As presented in the previous
section, the IMD application is not suitable for acceleration, however, interesting
execution time vs. energy trade-offs have been identified through static analysis
at instruction-level for three different ARM-based architectures.
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