Skip to main content

Multi-source and Multi-target Node Selection in Energy-Efficient Fog Computing Model

  • Conference paper
  • First Online:
  • 527 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 159))

Abstract

In the fog computing model to realize the IoT, each fog node supports application processes to calculate output data on input data received from a fog node and sends the output data to another fog node. In our previous studies, types of the TBFC (Tree-Based Fog Computing) models are proposed to reduce the electric energy consumption and execution time of fog nodes and servers and to be tolerant of node faults. In the TBFC models, the tree structure of fog nodes is not changed even if some fog node is overloaded and underloaded. In this paper, we consider the DNFC (Dynamic Network-based Fog Computing) model. Here, there is one or more than one possible target fog node for each fog node and also one or more than one possible source node for each target node. A pair of a source node and target node which exchange data have to be selected. In this paper, we propose an MSMT (Multi-Source and Multi-Target node selection) protocol among multiple source and target nodes. Here, a pair of a source node and a target node are selected so that the total energy consumption of the nodes can be reduced. In the evaluation, we show the total energy consumption and total execution time by target nodes can be more reduced in the MSMT protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Creeger, M.: Cloud computing: an overview. Queue 7(5), 3–4 (2009)

    Article  Google Scholar 

  2. Enokido, T., Ailixier, A., Takizawa, M.: A model for reducing power consumption in peer-to-peer systems. IEEE Syst. J. 4, 221–229 (2010)

    Article  Google Scholar 

  3. Enokido, T., Ailixier, A., Takizawa, M.: Process allocation algorithms for saving power consumption in peer-to-peer systems. IEEE Trans. Ind. Electron. 58(6), 2097–2105 (2011)

    Article  Google Scholar 

  4. Enokido, T., Ailixier, A., Takizawa, M.: An extended simple power consumption model for selecting a server to perform computation type processes in digital ecosystems. IEEE Trans. Ind. Inf. 10, 1627–1636 (2014)

    Article  Google Scholar 

  5. Gima, K., Oma, R., Nakamura, S., Enokido, T., Takizawa, M.: A model for mobile fog computing in the IoT. In: Proceedings of the 22nd International Conference on Network-Based Information Systems (NBiS 2019), pp. 447–458 (2019)

    Google Scholar 

  6. Guo, Y., Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: A two-way flow model for fog computing. In: Proceedings of the Workshops of the 33rd International Conference on Advanced Information Networking and Applications (WAINA 2019), pp. 612–620 (2019)

    Google Scholar 

  7. Guo, Y., Oma, R., Nakamura, S., Enokido, T., Takizawa, M.: Distributed approach to fog computing with auction method. In: Proceedings of IEEE the 34nd International Conference on Advanced Information Networking and Applications (AINA 2020), pp. 268–275 (2020)

    Google Scholar 

  8. Guo, Y., Saito, T., Nakamura, S., Enokido, T., Takizawa, M.: A dynamic network-based fog computing model for energy-efficient IoT. In: Proceedings of the 23rd International Conference on Network-Based Information System (NBiS 2020) (2020)

    Google Scholar 

  9. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: An energy-efficient model for fog computing in the internet of things (IoT). Internet of Things 1–2, 14–26 (2018)

    Article  Google Scholar 

  10. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Evaluation of an energy-efficient tree-based model of fog computing. In: Proceedings of the 21st International Conference on Network-Based Information Systems (NBiS 2018), pp. 99–109 (2018)

    Google Scholar 

  11. Oma, R., Nakamura, S., Enokido, T., Takizawa, M.: A tree-based model of energy-efficient fog computing systems in IoT. In: Proceedings of the 12th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS 2018), pp. 991–1001 (2018)

    Google Scholar 

  12. Rahmani, A., Liljeberg, P., Preden, J.-S., Jantsch, A.: Fog Computing in the Internet of Things. Springer (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinzhe Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Y., Saito, T., Nakamura, S., Enokido, T., Li, L., Takizawa, M. (2021). Multi-source and Multi-target Node Selection in Energy-Efficient Fog Computing Model. In: Barolli, L., Takizawa, M., Enokido, T., Chen, HC., Matsuo, K. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2020. Lecture Notes in Networks and Systems, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-030-61108-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61108-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61107-1

  • Online ISBN: 978-3-030-61108-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics