Skip to main content

Assessing Attribution Maps for Explaining CNN-Based Vertebral Fracture Classifiers

  • Conference paper
  • First Online:
Interpretable and Annotation-Efficient Learning for Medical Image Computing (IMIMIC 2020, MIL3ID 2020, LABELS 2020)

Abstract

Automated evaluation of vertebral fracture status on computed tomography (CT) scans acquired for various purposes (opportunistic CT) may substantially enhance vertebral fracture detection rate. Convolutional neural networks (CNNs) have shown promising performance in numerous tasks but their black box nature may hinder acceptance by physicians. We aim (a) to evaluate CNN architectures for osteoporotic fracture discrimination as part of a pipeline localizing and classifying vertebrae in CT images and (b) to evaluate the benefit of using attribution maps to explain a network’s decision. Training different model architectures on 3D patches containing vertebrae, we show that CNNs permit highly accurate discrimination of the fracture status of individual vertebrae. Explanations were computed using selected attribution methods: Gradient, Gradient * Input, Guided BackProp, and SmoothGrad algorithms. Quantitative and visual tests were conducted to evaluate the meaningfulness of the explanations (sanity checks). The explanations were found to depend on the model architecture, the realization of the parameters, and the precise position of the target object of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We also conducted experiments with a 3D ResNet18 variant  [7] that are out of scope for this publication but are in line with the presented results.

  2. 2.

    Other correlation measures (Pearson and Spearman coefficients) lead to similar conclusions.

References

  1. SpineAnalyzer. Optasia Medical Ltd., Cheadle Hulme, United Kingdom (2013)

    Google Scholar 

  2. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems, Montréal, Canada, pp. 9525–9536. Curran Associates Inc. (2018)

    Google Scholar 

  3. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Gradient-based attribution methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 169–191. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_9

    Chapter  Google Scholar 

  4. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher - layer features of a deep network. Technical report, Univeristé de Montréal (2009)

    Google Scholar 

  5. Genant, H.K., Wu, C.Y., van Kuijk, C., Nevitt, M.C.: Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 8(9), 1137–1148 (1993)

    Article  Google Scholar 

  6. Glüer, C.C., et al.: New horizons for the in vivo assessment of major aspects of bone quality microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium. Osteologie 22, 223–233 (2013)

    Article  Google Scholar 

  7. Haarburger, C., et al.: Multi scale curriculum CNN for context-aware breast MRI malignancy classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 495–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_54

    Chapter  Google Scholar 

  8. Husseini, M., Sekuboyina, A., Bayat, A., Menze, B.H., Loeffler, M., Kirschke, J.S.: Conditioned variational auto-encoder for detecting osteoporotic vertebral fractures. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 29–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_3

    Chapter  Google Scholar 

  9. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  10. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, San Diego, May 2015

    Google Scholar 

  11. Mader, A.O., Lorenz, C., von Berg, J., Meyer, C.: Automatically localizing a large set of spatially correlated key points: a case study in spine imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 384–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_43

    Chapter  Google Scholar 

  12. Nicolaes, J., et al.: Detection of vertebral fractures in CT using 3D convolutional neural networks. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 3–14. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_1

    Chapter  Google Scholar 

  13. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging weights leads to wider optima and better generalization. In: Uncertain Artificial Intelligence, Monterey, California, pp. 876–885. AUAI Press, Corvallis, March 2018

    Google Scholar 

  14. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not Just a Black Box: Learning Important Features Through Propagating Activation Differences (2016)

    Google Scholar 

  15. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise (2017). arXiv:Learning

  16. Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: International Conference on Learning Representations (2015)

    Google Scholar 

  17. Tomita, N., Cheung, Y.Y., Hassanpour, S.: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med. 98, 8–15 (2018)

    Article  Google Scholar 

  18. Young, K., Booth, G., Simpson, B., Dutton, R., Shrapnel, S.: Deep neural network or dermatologist? In: Suzuki, K., et al. (eds.) ML-CDS/IMIMIC -2019. LNCS, vol. 11797, pp. 48–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33850-3_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eren Bora Yilmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yilmaz, E.B., Mader, A.O., Fricke, T., Peña, J., Glüer, CC., Meyer, C. (2020). Assessing Attribution Maps for Explaining CNN-Based Vertebral Fracture Classifiers. In: Cardoso, J., et al. Interpretable and Annotation-Efficient Learning for Medical Image Computing. IMIMIC MIL3ID LABELS 2020 2020 2020. Lecture Notes in Computer Science(), vol 12446. Springer, Cham. https://doi.org/10.1007/978-3-030-61166-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61166-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61165-1

  • Online ISBN: 978-3-030-61166-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics