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Abstract. To date, most instance segmentation approaches are based
on supervised learning that requires a considerable amount of annotated
object contours as training ground truth. Here, we propose a framework
that searches for the target object based on a shape prior. The shape
prior model is learned with a variational autoencoder that requires only a
very limited amount of training data: In our experiments, a few dozens of
object shape patches from the target dataset, as well as purely synthetic
shapes, were sufficient to achieve results en par with supervised methods
with full access to training data on two out of three cell segmentation
datasets. Our method with a synthetic shape prior was superior to pre-
trained supervised models with access to limited domain-specific training
data on all three datasets. Since the learning of prior models requires
shape patches, whether real or synthetic data, we call this framework
semi-supervised learning. The code is available to the public1.

Keywords: Semi-supervised · Instance segmentation · Shape prior ·
Variational autoencoder · Edge loss

1 Introduction

Instance segmentation, where many instances of an object have to be segmented
in one image, is the basis of several practically relevant applications of computer
vision, such as cell tracking [1]. Many approaches [2,3,4] have been proposed for
instance segmentation, the majority of which are based on supervised learning.
The practical applicability of these methods is often limited by the lack of a large
training dataset with manually outlined objects. Here, we introduce an instance
segmentation approach that only relies on a shape prior which can be learned
from a considerably smaller number of training samples or even synthetic data.

The shape is one of the most informative cues in object segmentation and de-
tection tasks. Anatomically constrained neural networks (ACNNs) [5] improve
segmentation results by including a shape prior for model regularization. For

⋆ This work was supported by the Deutsche Forschungsgemeinschaft (Research Train-
ing Group 2416 MultiSenses-MultiScales).

1 https://github.com/looooongChen/shape prior seg
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segmentation refinement, a shape prior has been used by [6] as a separate post-
processing step. Segmentations generated by the shape prior model are recon-
structed to the original MRI images through several convolutional layers in [7].
By minimizing the reconstruction error, the segmentation model can be trained
in an unsupervised fashion. All these works report promising results, but are
limited to cases where object position and extent are roughly the same in all
images, such as for the cardiac images in [5], the lung X-ray images in [6] and
the brain MRI scans in [7]. To our knowledge, this is the first work considering
instance segmentation based on a shape prior, i.e. we detect and segment multi-
ple, scattered object instances. Similar to [8], we use the spatial transformer [9]
to localize objects. The main advantage of using the spatial transformer lies in
its differentiability, making the whole framework end-to-end trainable.

The main contributions of this work are: We propose (1) an semi-supervised
instance segmentation approach that seaches for target objects based a shape
prior, and (2) a novel loss computing the difference between two gradient maps.
This framework provides a way to achieve instance segmentation with a small
amount of manual annotations, or by utilizing unpaired annotations (where the
correspondence between annotations and images is unknown). We compared our
approach to the state-of-the-art supervised method, Mask R-CNN [2], in different
training scenarios. On three experimental datasets, our approach is proved to be
en par with a Mask R-CNN with full access to training data, while it outperforms
a pre-trained Mask R-CNN with limited access to domain-specific training data.

2 Approach

As shown in Figure 1, our framework consists of three main parts: 1) the local-
ization network, 2) the spatial transformer [9], and 3) the patch segmentation
network. Based on the localization prediction, the spatial transformer crops local
patches and feeds them to the patch segmentation network. The gradient maps
of segmented patches are then stitched together. The entire model is trained by
minimizing the reconstruction error of the gradient map.

During training, the model learns to predict the object position and to find
the correspondence between the image patch and the segmentation. The shape
prior model (gray part in Fig. 1; fixed during training) is guaranteed to output
a plausible shape, but the correspondence has to be learned by the model itself.

2.1 Localization network

The localization network consists of 8 convolutional layers and 4 max pooling
layers after every 2 convolutional layers. Given an image of size (Himg,Wimg), the
localization network will spatially divide the image into an (Himg/Scell,Wimg/Scell)
grid of cells, where Scell is the cell size and also the downsampling rate. Since 4
pooling layers with stride 2 are used, we have Scell = 16.

Each cell is responsible to predict the presence of an object Lpresence ∈ [0, 1],
its range described by the bounding box size (Hobj ,Wobj) and the offset with
respect to the cell center (Ox, Oy) (Figure 2(a)), with the implementation:
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Fig. 1: Architecture of our framework: the localization network predicts the ob-
ject position and a presence score, based on which object patches are cropped
by a spatial transformer. A variational autoencoder with the decoder part fixed
(shape prior) is responsible for the patch segmentation. At last, the gradient
maps of segmented patches are stitched together. The model is trained by min-
imizing the reconstruction loss of the gradient map with the KL-divergence loss
as regularization.

Lpresence = sigmoid(fpresence)

Lscale = sigmoid(fscale) · (Smax − Smin) + Smin

Lratio = exp(tanh(fratio) · log(Rmax))

(Lx, Ly) = (0.5 · tanh(fx), 0.5 · tanh(fy))

where f[·] is the corresponding input feature map. sigmoid(·) and tanh(·) denote
the sigmoid and tanh activation function. Smin, Smax and Rmax are hyperparam-
eters, which are the minimal scale, the maximal scale and the maximal aspect
ratio, respectively. The position is parameterized according to:

(Hobj ,Wobj) = (Lscale · Scell/
√
Lratio, Lscale · Scell ·

√
Lratio)

(Ox, Oy) = (Lx · Scell, Ly · Scell)

It is worth mentioning that the maximal offset is 0.5 ·Scell, which means that
an object will be detected by the cell in which its center lies.

2.2 Patch crop and stitch

Given the location parameters obtained from the localization network, we use a
spatial transformer to crop local patches. The spatial transformer implements the
crop by sampling transformed grid points, which is differentiable, enabling end-
to-end training. The patch crop of the i -th cell can be described by transform:

T i
crop =

Wimg/W
i
obj 0 Wimg · (Xi

cell +Oi
y)/W

i
obj

0 Himg/H
i
obj Himg · (Y i

cell +Oi
x)/H

i
obj

0 0 1
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Fig. 2: (a) Demonstration of parameters of a bounding box. (b) Architecture
of the patch segmentation network, which is firstly trained with shape patches.
During the detector training, the decoder part is fixed and plays the role of shape
prior.

where (Xi
cell, Y

i
cell) is the cell center. (O

i
x, O

i
y) and (Hi

obj ,W
i
obj) are the predicted

offset and size of the object. All cropped patches will be rescaled to size Spatch×
Spatch (Spatch = 32 in this work) and segmented by the patch segmentation
network, as described in Section 2.3. After that, the gradient map of segmented
objects will be stitched together by adding up back transformed patches through:

T i
stitch =

W i
obj/Spatch 0 Xi

cell +Oi
y

0 Hi
obj/Spatch Y i

cell +Oi
x

0 0 1


The gradient map is computed by applying the x- and y-directional Sobel

filter to the image and taking the square root of the summed square. The gradient
map is normalized to range 0 to 1. In this work, we use an input size of 256×256
for all experiments. Considering Scell = 16, 256 patches are cropped in total.

2.3 Shape prior and patch segmentation network

Similar to [5,6,7], we employ a variational autoencoder (VAE) as our shape
model. As shown in Figure 2(b), the model is trained to reconstruct plausible
patch segmentation masks with the KL-divergence loss as regularization.Compared
to a standard autoencoder, a VAE learns a more continuous latent space, which
is expected to generate plausible new shapes that do not appear in training data.

In this work, the VAE is trained with 32× 32 patches. The encoder and de-
coder consist of 6 convolutional layers and 3 pooling/upsampling layers, respec-
tively. Based on our experiments, model training requires only a small amount
of data, especially when the shape variation is small. We train the shape prior
with either annotations from a single image or synthetic data (Section 3).

After training, the decoder part will be used as the shape prior in the detector
(Figure 1). Its parameters will be fixed during the detector training. The encoder
will be reinitialized and trained together with the localization network.

2.4 Training

The model is trained end-to-end by minimizing the gradient map reconstruc-
tion error with the KL-divergence loss as regularization. In initial experiments,
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we found the mean absolute/squared error (MAE/MSE) to be very unstable
during training: The shape prior model tends to generate distorted shapes or
degenerates into empty output. Thus, we propose the following novel loss:

Ledge = 1−
1
N

∑
i min2(Gi

image, G
i
reconstruction)

1
N

∑
i G

i
reconstruction + α

(1)

where Gimage and Greconstruction indicate the gradient map of the image and
the reconstructed gradient map. N is the number of pixels. The min() operation
are conducted pixelwise. The parameter α prevents the model from pushing
Greconstruction to zero and is set to 0.01 empirically.

Instead of optimizing the value of each pixel, as MSE and MAE, this loss
maximizes the proportion of the reconstructed gradient map under the image
gradient map. In addition, the square operator in the numerator is proved to
be crucial for stable training in our experiments. Our interpretation is that the
square operator modulates the back-propagated gradient with the reconstructed
gradient map, giving more emphasis to positions around the edge.

2.5 Pre- and post-processing

To reduce the influence of extreme values on the loss, we equalized the image
and the gradient map by clipping and streching. For all datasets, we truncated
the gradient map at 0.8 times the maximum and normalized the value to the
range 0 to 1. In addition, we also performed image equalization for the Fluo-
N2DH-SIM+ dataset due to the bright spots inside the cell (Figure 3). The clip
value was set to 1.2 times the image mean.

As post-processing, we first filtered out predictions with Lpresence smaller
than 0.1. Non-max suppression is then performed to eliminate duplicate predic-
tions: An instance mask is compared with another mask, when the overlapping
area is larger than pnon max = 0.1 with respect to its own area. A mask is only
retained if its score is the highest in all comparisons.

3 Experiments and results

3.1 Datasets and experiments

We evaluate our approach on three datasets: the BBBC006 dataset2 and two
datasets Fluo-N2DH-SIM+ and PhC-C2DL-PSC from the cell tracking chal-
lenge [1]. In the following, we use BBBC, FLUO and PHC as abbreviations. The
BBBC dataset contains 768 microscopic images of human U2OS cells, while the
FLUO (HL60 cells with Hoechst staining) and PHC (pancreatic stem cells on a
polystyrene substrate) datasets are smaller with 215 and 202 annotated images.

For comparison, we also report the performance of the supervised method
Mask R-CNN. The following experiments are performed:

2 https://data.broadinstitute.org/bbbc
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Ours-annotation: We first evaluate our approach with the shape prior learned
from manual annotations. We only took segmentation patches from one image.
Specifically, 67, 8 and 138 object patch masks were used for the BBBC, FLUO
and PHC shape model training. To model small shape changes and object rota-
tion, we performed rotation (in steps of 30 degrees) and elastic deformation [11]
to augment the training set. The scale range and maximal aspect ratio was set
to 2-3/3, 1-2/1.5 and 1-2/3, respectively.
Ours-synthetic: Since the objects are approximately circular, especially for the
BBBC and FLUO datasets, we could train the shape prior model with synthetic
data consisting of elastically deformed ellipses [11] with random angle and major-
minor axis ratio. The maximal major-minor axis ratio was 2, 1.5 and 3 for the
BBBC, FLUO and PHC dataset, respectively.
MRCNN-scratch-one/full: We trained a Mask R-CNN from scratch using
ResNet-50 backbone. The anchor box scale, aspect ratio and non-maximum sup-
pression (NMS) threshold were set to values equivalent to those used in our
approach. Since the Ours-annotation scenario can be considered as one image
training, we also trained a Mask R-CNN with one image for comparison.
MRCNN-finetune-one/full: Since the dataset in our experiments is small,
especially for FLUO and PHC, we pretrained the Mask R-CNN on the MS
COCO dataset3. Afterwards, we finetuned the model, with only the head layers
trainable, on the actual target dataset.

For the BBBC and PHC dataset, we cropped images to 256×256 and 128×128
for training and test. All images were resized to 256×256 for the network input.
For the scenarios using one training image (Ours-annotation, MRCNN-scratch-
one, MRCNN-finetune-one), the images a01 s1, 02/t000, 02/t150 were used for
BBBC, FLUO and PHC, respectively. MRCNN-scratch-full and MRCNN-finetune-
full used a01 s1-b24 s2, 02/t000-t149, 02/t150-t250 for training. Ours-synthetic
requires no manual annotations. All remaining images were kept for testing.

3.2 Results and discussion

We report the average precision4 (AP) over a range of IoU (intersection over
union) thresholds from 0.3 to 0.9 as the evaluation score (Table 1). Our approach,
including the evaluation scenarios where the shape prior is learned from one
image annotation and synthetic data, outperforms the Mask R-CNN trained
or finetuned with one image, which shows the advantage of our approach in
cases where few or no annotations are available. Furthermore, our approach
achieves comparable results with the Mask R-CNN trained/finetuned with the
full training set on the BBBC and FLUO dataset, while the performance gap is
apparent for the PHC dataset.

While Mask R-CNN achieved the best mean AP (mAP) on the BBBC dataset,
our approach outperformed Mask R-CNN on the FLUO dataset by a relatively
large margin. The main reason is that the FLUO dataset is indeed a very small

3 https://cocodataset.org/
4 https://www.kaggle.com/c/data-science-bowl-2018
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Ground Truth

Ours-
synthetic

Ours-
annotation

MRCNN-
finetune-one

MRCNN-
finetune-full

Fig. 3: Qualitative results: from top to bottom, the rows show the results on the
BBBC006, Fluo-N2DH-SIM+ and PhC-C2DL-PSC datasets, respectively.

one for Mask R-CNN training, even with finetuning. This again illustrates the
advantage of our method on small datasets.

On the PHC dataset, neither method performed particularly well. Both meth-
ods tended to detect nearby objects as one if there was no clearly visible edge
between them. The average precision of our method in the low IoU range was
close to or better than that of Mask R-CNN. Figure 3 shows that our method
could detect most objects as well as the Mask R-CNN. However, our method
has been designed to heavily rely on the edge clue, so that the segmentation
will converge to strong edges. For the PHC dataset, the object boundaries do
not generally correspond to the strongest edges. This explains why objects were
undersegmented by our approach (Figure 3) and why the average precision de-
creased rapidly with increasing IoU (Table 1).

The performance improvement through training the shape prior with manu-
ally outlined shapes depends on the nature of the shape. On the FLUO dataset,
annotated data and synthetic data shape priors performed almost equally well,
while training with manual annotations was superior on the other two datasets,
even though only a few dozen shapes were used.

4 Conclusion and outlook

We have proposed an instance segmentation framework which searches for tar-
get objects in images based on a shape prior model. In practice, this allows
segmenting instances with a very limited amount of annotations, segmenting
synthesizable shapes without any annotation, as well as reusing object annota-
tions from other datasets.
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Table 1: Average precision (AP ) over different IoU for different datasets (the
best two scores in bold). Experiments and abbreviations are introduced in Sec-
tion 3.1.
Dataset IoU 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mAP

BBBC

Ours-annotation .8345 .8260 .7977 .7632 .7083 .6100 .2660 .6865
Ours-synthetic .8171 .8012 .7641 .7170 .6525 .5247 .2042 .6401

MRCNN-scratch-one .6386 .5934 .5459 .4769 .3543 .1759 .0294 .4020
MRCNN-scratch-full .7901 .7851 .7708 .7473 .7128 .6296 .3374 .6817
MRCNN-finetune-one .7672 .7524 .7277 .7020 .6608 .5492 .1250 .6121
MRCNN-finetune-full .7997 .7949 .7851 .7720 .7521 .6923 .3485 .7064

FLUO

Ours-annotation .9605 .9538 .9312 .8999 .8228 .6777 .1332 .7685
Ours-synthetic .9600 .9497 .9336 .8986 .8324 .6768 .1378 .7698

MRCNN-scratch-one .0458 .0324 .0156 .0018 .0000 .0000 .0000 .0014
MRCNN-scratch-full .9333 .9144 .8703 .7605 .5765 .2556 .01073 .6173
MRCNN-finetune-one .8224 .8133 .7905 .7389 .5909 .2404 .0049 .5716
MRCNN-finetune-full .9361 .9252 .8955 .8467 .7265 .4115 .0197 .6802

PHC

Ours-annotation .6840 .6034 .4035 .1468 .0233 .0028 .0000 .2662
Ours-synthetic .6471 .5611 .3605 .1326 .0219 .0027 .0000 .2466

MRCNN-scratch-one .1124 .0991 .0847 .0668 .0353 .0049 .0000 .0576
MRCNN-scratch-full .6332 .6001 .5226 .4467 .2981 .1079 .0023 .3730
MRCNN-finetune-one .1647 .1602 .1460 .1146 .0633 .0108 .0000 .0942
MRCNN-finetune-full .6551 .6380 .5855 .5014 .3425 .1144 .0007 .4053

The main limitation of our approach lies in the dependency on the edge cues.
Images should have a relatively clear background, which is, however, the case
for many biomedical datasets4. Future work will focus on including area-based
information, which will make our approach applicable to further datasets, e.g.
in cases where edges and object boundaries do not always coincide.

References

1. Ulman, V., et al.: An Objective Comparison of Cell-tracking Algorithms. Nature
Methods, 14, 1141-1152 (2017)

2. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 ICCV, 2980-
2988

3. Schmidt, U., Weigert, M., Broaddus, C., Myers, E.W.: Cell Detection with Star-
Convex Polygons. In: 2018 MICCAI, 26–273

4. Chen, L., Strauch, M., Merhof, D.: Instance Segmentation of Biomedical Images with
an Object-Aware Embedding Learned with Local Constraints. In: 2019 MICCAI,
451-459

5. Oktay, O., et al.: Anatomically Constrained Neural Networks (ACNNs): Application
to Cardiac Image Enhancement and Segmentation. IEEE Transactions on Medical
Imaging, 37(2), 384-395 (2018)

6. Larrazabal, A. J., Martinez, C., Ferrante, E.: Anatomical Priors for Image Segmen-
tation via Post-processing with Denoising Autoencoders. In: 2019 MICCAI, 585-593

7. Dalca, A. V., Guttag, J., Sabuncu, M. R.: Anatomical Priors in Convolutional Net-
works for Unsupervised Biomedical Segmentation. In: 2018 CVPR, 9290-9299



Semi-supervised Instance Segmentation with a Learned Shape Prior 9

8. Crawford, E., Pineau, J.: Spatially Invariant Unsupervised Object Detection with
Convolutional Neural Networks. In: 2019 AAAI, 3412-3420

9. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial Transformer
Networks. In: 2015 NIPS, 2017-2025

10. Kingma, D. P., Welling, M.: Auto-Encoding Variational Bayes. In: 2014 ICLR
11. Simard, P. Y., Steinkraus, D., Platt, J. C.: Best Practices for Convolutional Neural

Networks Applied to Visual Document Analysis. In: Proceedings of the Seventh
International Conference on Document Analysis and Recognition, pp. 958. IEEE
(2003)


	Semi-supervised Instance Segmentation with a Learned Shape Prior 

